ors: 60-41,069 JPRS: 5173 9 August 1960 # LOGICAL METHOD OF CONTROL OF OPERATION OF ELECTRIC NETWORKS - USSR - by I. A. Chegis and S. V. Mablonskiy Distributed by: OFFICE OF TECHNICAL SERVICES U. S. DEPARTMENT OF COMMERCE WASHINGTON 25, D. C. U. S. JOINT PUBLICATIONS RESEARCH SERVICE 205 EAST 42nd STREET, SUITE 300 NEW YORK 17, N. Y. > Reproduced From Best Available Copy 20000724 1 DISTRIBUTION STATEMENT Approved for Public Release Distribution Unlimited # LOGICAL METHOD OF CONTROL OF OPERATION OF ELECTRIC NETWORKS [Following is the translation of an article by I. A. Chegis and S. V. Yablonskiy in Trudy Matematicheskogo Institute imeni V. A. Steklova (Transactions of the Mathematics Institute imeni V. A. Steklova) Vol. LI, Moscow, 1958, Pages 270-360] JPRS: 5173 CSO: 3316-N/G I. A. Chegis and S. V. Yablonskiy LOGICAL METHOD OF CONTROL OF OPERATION OF ELECTRIC NETWORKS ## Introduction In the operation of complicated networks, even elements, the when they are made up of reliable probability of appearance of faults becomes considerable. Therefore, in the operation of complicated networks, particular attention attaches to the problem of monitoring the operation of these devices, of methods of finding faults. However, by virtue of the complexity of networks, the process of finding faults requires a great loss of time and high skill on the part of the service personnel. These circumstances have led the authors to engage in the development of a mathematical formalism, which permits, at a relatively small number of tests (ringing), to determine the place and the character of the fault. The basic results in this direction were obtained in 1954 and were reported at the session of the Moscow Mathematical Society in 1955 [5]. The constructed rules make it possible to automize the process of control of the operation of the device. In the case of manual control, they also are of considerable effectiveness, since because of their algorithmic nature they can be performed by workers of low skill and within a short time. In the present article we expound in detail this problem. The general theory developed in this paper is based on the following premises. - 1) A network $\mathbb N$ is specified, and when it is in working order it realizes a certain function $f(x_1, x_2, \dots, x_n)$, specified on the set E. - 2) There is a list of possible faults (which are not of random character) with an indication of the number of simultaneously possible faults; with this, to each possible combination of faults there corresponds a function defined on the set E. - 3) Methods of carrying out the control are described. are applicable only to networks for which a logical description has been developed. Therefore, for illustration, we have used contact networks. This choice was dictated also by the fact that contact networks represent, from the point of view of reliable means, the most simple networks, hence the necessary step towards studying the more complicated networks. b In addition, a whole series of questions was considered exclusively for contact networks. As applied to contact networks, premises 1, 2, and 3 are formulated as follows. - 1) Corresponding to contact network \mathbb{O} is a function $f(x_1, x_2, \dots, x_n)$ of algebraic logic. - 2) Two kinds of faults are considered -- the short circuiting of the contact and the opening of the contact; so far no limitations are imposed on the number of simultaneously possible faults. - 3) The network is monitored on the basis of its response to different various combinations of the states of the relays. Example. The network shown in Fig. 1 realizes the function $f(x_1, x_2) = x_1 + x_2 + 1 \pmod{2}$. Let it be required to find fault in the network, if it is known that one contact is faulty. It is easy to see that for this purpose it is enough to establish whether or not the network conducts under the following states of the relays $$x_1 = 0$$, $x_2 = 0$; $x_1 = 0$, $x_2 = 1$; $x_1 = 1$, $x_2 = 0$; $x_1 = 1$, $x_2 = 1$. Namely: if when $x_1 = x_2 = 0$ the circuit does not conduct, then either contact 2 is open or contact 4 is open; if when $x_1 = x_2 = 1$ the circuit does not conduct, then either contact 1 is open or contact 3 is open; if when $x_1 = 0$ and $x_2 = 1$ the circuit does conduct, then either contact 1 or contact 4 is closed; if when $x_1 = 1$ and $x_2 = 0$ and the circuit conducts, then either 2 or contact 3 is closed. The article consists of two chapters. In Chap. I are considered general problems of control of networks, that is to say without taking into account the structure of the network. A general procedure is given for the construction of tests. For illustration we give several examples from the field of contact networks. The measures developed for the construction of minimal tests can be used directly for the construction of minimal disjunctive (or conjunctive) normal forms [6]. At the end of the chapter we establish a duality principle for tests and disclose certain properties of single tests as applied to contact networks. What remains unstudied are the possibilities of control by means of conscious modification of the topology of the network; for example, short circuiting between any two vertices of the network, the removal of part of the network, the rearrangement of the blocks, etc. In Chap. II procedure is given for the construction of tests for individual classes of networks with account taken of the structure of the networks. The latter is due to the fact that the general algorithm, even for relatively simple contact networks (which realize functions of 6 or 8 variables) network synthesis, it was logical to narrow down the class of networks and thereby increase the effectiveness. The procedure of construction the tests is based here on a block construction of the network and on an inductive specification of the functions. In this manner the construction of tests reduces to the construction of tests for individual blocks. In the latter case the consideration of the general theory are used. Next to be studied are tentative and ordered texts. The results of Chap. I and Chap. II, Sec. 7 were derived by S. V. Yablonskiy; the remaining results were obtained by I. A. Chegis. The general writing of the text was perforemed by S. V. Yablonskiy. The work on the formulation and calculation of the examples was carried out by T. A. Alferova and L. N. Rybakova, to whom the authors express their gratitude. # Chapter I General Theory of Construction of Tests 1. Tables of Fault Functions and Methods of Their ## Construction Let a network OL consist of Z elements (for example, contacts). Let furthermore the element i have si faults. It is obvious that the number of different faults in the network is equal to $$\prod_{i=1}^{i} (1+s_i)-1.$$ Let us renumber the faults of interest to us. Then, for the j-th fault the network \mathcal{M} goes into the network \mathcal{M}_j . We denote by $f_j(x_1, x_2, \dots, x_n)$ the function corresponding to the work of the network \mathcal{M}_j . The function $f_j(x_1, x_2, \dots, x_n)$ is called the fault function. Let M be the set of investigated faults. Then table of functions, containing a table of functions $f(x_1, x_2, \dots, x_n)^*$, and also the tables of all the fault functions $f_a(x_1, x_2, \dots, x_n)$, where $a \in M$, is called the table of fault functions. There exist two methods of constructing tables of fault functions. The first method consists of constructing the table by rows. For this purpose one scans all the assemblies of the values of the arguments. For each value of the argument one seeks the corresponding value of the function f, and one marks on the ^{*} We make the correct state of the network correspond to the index 0, and then, by definition, the function $f_0(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n)$. diagram the contacts, either with a solid line or with a dotted line, depending on whether the contact closes or opens at the particular assembly. Then, for f = 0, one picks out those faults which short the network, and in the according columns of the row under consideration one places a "1". At f = 1, one picks out those faults, which open the circuit, and on the corresponding columns of the row under consideration one places a "0". Then after scanning all the assemblies one obtains a table of fault functions. In each column of the table, corresponding to a given fault, one obtains a table of the functions of this fault, and into the empty boxes one should transfer mentally the corresponding values of the function f₀. Example. Let us consider the sequence of compiling a table of fault functions in accordance with the indicated first method, for the network shown in Fig. 2, which realizes the function $s_{1,3,4}^{(x, y, z, w)}$, and the assumed faults are the closing or opening of a single contact. For convenience, we number the contacts of the network (see Fig. 2) from 1 to 14. Vistribution of the faults is shown in Table 1. Fig. 1 Table 1 | (x, y, z, u) | 0 | 1 | 2 | 8 | 4 | ŏ | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1.4 | 1' | 2 | 3' | 1' 5 | 16 | - | . 3 | . 9 | 1 | 6. | 11' | 12 | 13' | 14' | |--------------|----------------|---|---|---|-----|---|---|---|-------|------|----|----------|----|----------|-----|----------|----|----|------|----|--------|-----|-----|---|----|-----|----|----------|------| | (0. 0. 0. 0) | 0 | 1 | | İ | | 1 | | 1 | | 1 | | | ı | | | | | | | | | | | | | | | | | | (0, 0, 1, 1) | 0 | 1 | | | | 1 | | | 1 | | 1 | l | | | | | _ | | - | | | | | 1 | | | | | | | (0, 1, 0, 1) | 0 | 1 | | | 1 | | 1 | 1 | | 1 | | 1 | | | | | | 1 | | | | | | | | | | | | | (0, 1, 1, 0) | 0 | 1 | | |]] | | i | | 1 | | 1 | <u> </u> | 1 | | | | | | | - | 1 | | | | | | | | | | (1, 0, 0, 1) | 0 | | 1 | 1 | | 1 | | 1 | | 1 | | 1 | : | <u> </u> | : | <u> </u> | | | | | | 1 | | 1 | | | | <u> </u> | | | (1,0,1,0) | U | | 1 | 1 | | 1 | | | 1 | | 1 | <u> </u> | 1 | | | | | | | 1 | | | | | | | | | | | (1, 1,
0, 0) | 0 | İ | 1 | |]] | j | | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | (0, 0, 0, 1) |] | | | | | | | | | | | | | | _ | | 0 | | | | 0 | | | | 0 | | 0 | | | | (0, 0, 1, 0) | 1 | | | | | | | | | | | | | | | | 0 | - | | | 0 | | | O | | 0 | | | ,,,, | | (0, 1, 0, 0) | 1 | - | | , | | | | 1 | | | | | | | | | 0 | | | 0 | | | 0 | | | 0 | | | | | (0, 1, 1, 1) | 1 | T | | | | | | | | | | İ | | | | | 0 | | | 0 | i
1 | 0 | | | | | (| • | | | (1, 0, 0, 0) | Ī | | | | | | | | | 1 | | | | | | 1 | , | | 0 | | | | () | | | 10 | | | | | (1, 0, 1, 1) | 1 | 1 | | | | | j | | | | | | | | | | | | 1 | | | 1, | : | | | | • | , | | | (1, 1, 0, 1) | 1 | 1 | Ì | | - | | İ | | | | | ! | İ | | | | o | | υ | | | | | | | | | (| , | | (1, 1, 1, 0) | | 1 | | | | | ! | | | | 1 | ! | | | | | ol | | o | | | | | ì | | | | | | | (!, 1, 1, 1 | - - | 1 | | | | | | 1 | i
 |
 | 1 | ĺ | | | | | oj | | o | | | 1 | | | | | | ; | 1 | $f_7 = f_9,$ $f_{e^{-1}} = f_{10},$ $f_{13} = f_{13}$ In this table, the first column (x, y, z, w) contains all possible assemblies, whereas the succeeding columns are headed with the numbers 0, 1, 2, ..., 14 and 1', 2', ..., 14', where the number 0 corresponds to the correct state of this network, and each of the numbers 1, 2, ..., 14 corresponds to as closing of the contact denoted by the same number on Fig. 2, and to each of the numbers 1', 2', ..., 14' corresponds an opening of the same contact. Figs. 3 and 4 show sketches of each assembly indicated in Table 1; the asterisks mark the contacts, the closing (Fig. 3) or opening (Fig. 4) each of which brings the circuit to a closed or to an open state. Over each network is written out the corresponding assembly, and under each network the numbers of these faults are individually written. To explain the manner with which the construction of Table 1 is carried out and with which the indicated diagrams of Figs. 3 and 4 are drawn, let us consider the assembly (0, 0, 0, 0), $S_{1,3,4}(0, 0, 0, 0) = 0$. Corresponding to it is the correct state of the system indicated in the upper left corner of Fig. 3. Comparing this circuit with the row of Table 1 corresponding to the assembly (0, 0, 0, 0) and with Fig. 2, we see that in the table one places a "inin the columns with numbers corresponding to the numbers of the contacts marked with asterisks (i.e., in columns 1, 5, 7, 9, and 12). In the second method the table is constructed by columns. For this purpose one introduces a fault in the network, i.e., certain contacts are short circuited and others are discarded. After such an operation, a network with the particular fault under consideration is obtained. This network corresponds to the fault function of interest to us. However, sometimes there is no need for compiling again a function of this fault. In fact, assume that a certain contact has opened. Let us consider all the circuits which pass through this contact. We write out all the assemblies corresponding to these circuits. Obviously, the fault function (corresponding to the opening of the contact under consideration) can differ from the original function $f(x_1, x_2, ..., x_n)$ only at the written out assemblies, or more accurately, the difference takes place, if the written assemblies are not encountered in any circuit that does not pass through the given contact, and to the contrary, the difference in a certain assembly does not take place if this assembly is encountered at least in one such circuit. Fig. 2 Fig. 3 Assume that the fault consists of a shorted contact . Let us consider all the circuits which have passed through this contact, eliminating those in which a contact identical with that considered is involved. Again we write out all the assemblies corresponding to these In the assemblies we change the values correcircuits. sponding to the given contact to the opposite ones. fault function either does not differ from the original function at the constructed assemblies, or differs from it, depending on whether or not these assemblies are encountered in the circuits that do not pass through the given contact. However, the difference in the fault function from $f(x_1, x_2, ..., x_n)$ can take place also at other assemblies, which correspond to the so called "false circuit," i.e., circuits different from those considered above. An example of a network with a false circuit is shown in Fig. 5. Example. Let us consider the order of compiling a table of fault functions in accordance with the second method for the preceding circuit (see Fig. 2). Shorts. Fig. 6 shows the circuits that are produced from the initial one (see Fig. 2) from closing of any given single contact. On the diagrams of Fig. 6 these contacts are denoted by the number 1, which designates an identical admittance. Analyzing Fig. 6, we obtain functions that describe the corresponding admittances of the networks (i.e., the fault functions for a given network): $$\begin{split} f_1 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w}, \\ f_2 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee xy\bar{z}\bar{w} \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w}, \\ f_3 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee xy\bar{z}\bar{w} \bigvee xyz \bigvee xyw, \\ f_4 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}\bar{z}w \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_5 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}zw \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_7 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_8 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_9 &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_{10} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}zw, \\ f_{11} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_{12} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_{12} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee xyz\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_{13} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w}, \\ f_{14} &= S_{1,3,4}(x,\ y,\ z,\ w) \bigvee xy\bar{x}. \end{split}$$ Here the numbers of the function f correspond to the numbers of the networks on Fig. 6. Open circuits. Analogously, on Fig. 7 we show the networks that are derived from the initial cone upon opening of any single contact, and the contact in which the discontinuity takes place is denoted by zeros on these diagrams. For each network shown in Fig. 7, we write out a function that describes the admittance of this network (i.e., the fault function for the given network): $f_{Y} = xyzw \bigvee xy\bar{z}\bar{w} \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w},$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee xy\bar{z}w \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w},$ $f_{Y'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w},$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw,$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}zw \bigvee x\bar{y}zw,$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw,$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}zw,$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}zw \bigvee x\bar{y}zw,$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w},$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}zw \bigvee x\bar{y}zw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w},$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w} \bigvee x\bar{y}z\bar{w},$ $f_{Z'} = xyz \bigvee xyw \bigvee x\bar{y}z\bar{w} \bigvee$ Here, too, the number of the function f corresponds to the number of the network on Fig. 7. The advantages of any particular method depend on the specific case: on the network, on the character and number of faults. For the purposes of control, it is convenient to construct the table in both manners. In the compilation of the table it may be found that certain columns coincide identically. Thus, in the example under consideration here we have $f_7 = f_9$, $f_8 = f_{10}$, and $f_{13} = f_{14}$. The coincidence denotes that the corresponding faults are electrically undistinguishable or, if one of the columns is empty (always corresponds to the correct state) that the network contains excessive contacts. In the latter case, by removing these contacts we obtain a network equivalent to the initial one. We note that the fact that certain fault functions coincide can be predicted directly from the network. In fact, if the permissible fault is a break in the contact, then, if two contacts are connected in series, it is impossible to establish which of these is broken. Analogously, it is impossible to establish the shorting of a contact in the case of a parallel connection. It is interesting to ascertain a criterion that would permit finding the faults which are undistinguishable from the analysis of the network. Thus, all the faults in the correct state are all broken up into classes such that the representatives of one class have identical columns, and the representatives of different classes have different columns. We shall henceforth deal with constructed classes, denoting them by numbers of certain of their representatives. # 2. Tests and Their Construction Let \mathcal{M} be a set of functions $f(x_1, x_2, \dots, x_n)$, specified on and
and the same set E and assuming values from the set G (here n is the same for all the functions). We assume furthermore that all the functions from the \mathcal{M} set are pairwise different. Let furthermore there be fixed a certain subset \mathcal{M} (not ordered) pairs of functions of the set \mathcal{M} , where the pairs (f, f) are excluded. Definition. A set $T \subset E$ is called a test (relative to $E, \mathcal{M}, \mathcal{N}$) if, no matter what pair of functions $(f, g) \in \mathcal{M}$, $f(x_1, x_2, \dots, x_n)$ $\neq g(x_1, x_2, \dots, x_n) \text{ on the set } T.$ It is obvious that the concept of a test depends on the set \mathcal{U} . From the definition it follows that E is a test (trivial test). Let us proceed now to describe the construction of tests. Let $T = \{e_1', e_2', \ldots, e_t'\}$ be a certain test. Let us take $(f_i, f_j) \in \mathcal{H}$. Since T is a test, then there exists an assembly $e_s' \in E(1 \le s \le t)$ such that $f_i(e_s') \neq f_j(e_s')$. This assembly, consequently enters into the set E_{ij} —the set of all the assemblies on which the functions f_i and f_j are different. From this we have the following: T is the result of the selection from all the sets $E_{i,j}$ where $(f_i, f_j) \in \mathcal{N}$ Attention should be called here to the fact that owing to the use of the "selection principle" (true, in a case of a finite set) in the formation of T, we obtain a cumbersome apparatus for the construction of tests. To describe and construct tests it is convenient to use the apparatus of algebraic logic. In fact, let us write the set E_{ij} in the form of the formula $$e_{1} \& f_{i}(e_{1}) \neq f_{j}(e_{1}) \lor e_{2} \& f_{i}(e_{2}) \neq f_{j}(e_{2}) \lor \ldots \lor e_{m} \& f_{i}(e_{m}) \neq f_{j}(e_{m}) = e_{1}^{ij} \lor e_{2}^{ij} \lor \ldots \lor e_{k_{ij}}^{ij}, \text{ the } e_{r}^{ij} \in E = \{e_{1}, e_{2}, \ldots, e_{m}\}.$$ We make up the expression $$\prod_{(f_{0},f_{0})\in\mathfrak{N}}(e_{1}^{ij}\bigvee e_{2}^{ij}\bigvee\ldots\bigvee e_{k_{ij}}^{ij})\,,$$ where under the sign \mathbb{T} we understand the abbreviated notation for the expression ()&()&...&(). The expression obtained is of the form $$\mathbb{T} \leq$$. Applying the distributive law, and also the law of action with symbols e_k^{ij} as with the variables of algebraic logic, i.e., by putting $$e_k \& e_k = e_k$$ and $e_i \bigvee A \& e_i = e_i$, we reduce the expression to the form $\sum T$, where the sum Ldoes not contain excessive terms. We can now formulate the following proposition. Theorem. The elements that enter into one term of $\leq \pi$ generate a set which is an elementary test. The theorem follows from the fact that the term contains elements from each bracket $(e_1^{ij} \lor e_2^{ij} \lor \cdots \lor e_{k_{ij}}^{ij})$, where $(f_i, f_j) \in \mathcal{N}$. Note. We see that the question of finding tests reduces to the construction of a set, which has in common with each subset in the expression of the form $T \geq at$ least one element. Therefore the sets that have these properties with respect to the expression of the form will be called a test for the expression $T \leq at$ We note that the transformation of T≤ to ≤T is cumbersome. This cumbersomeness reflects a more general set-theoretical fact, which states that under this kind of transformations it becomes frequently necessary to increase the cardinality (as in an A operation). The method of transformation will be investigated in greater detail in the next section. We shall indicate only one application of elementary tests here. ^{*} A test T is called elementary, if any subset T' C T is not a test. Definitions. The cardinality of the set T, which is a test, is called the length of the test. A test which has a minimal cardinality is called minimal. It is obvious that all the minimal tests (of which there can be several) are found among the elementary tests. We shall henceforth be interested in minimal tests or in tests whose lengths are close to minimal. Let W be a set of fault functions. One can imagine that they are all reduced to a single table, as was already done (see Sec. 1). Let ${\mathcal N}$ be a non-empty set of different unordered pairs of functions from \mathcal{W} . our case N will contain most frequently all such possible pairs. In the latter case the test is such a set, on which all the functions from ${\mathfrak M}$ are pairwise distinguishable. In other words, in order to detect a fault, it is enough to verify the network only for those sets, which are contained in the test. In the case when T \neq E, this verification is shorter than the verification with using all the assemblies. In addition, when T / E there is no need of writing out the entire table of fault functions -- it is enough to know only that portion of the table, corresponding to the set T. By virtue of the foregoing, particular significance attaches to the problem of constructing minimal tests. The shorter the length of the test, the shorter the verification time of the network. However, this time can be reduced even further, by taking into That is to say, account probability considerations. once the network has been regulated, then the network is correct with the greatest probability; different faults are encountered with different probabilities. furthermore into consideration that to detect a specific fault there is as a rule no need for "running through" the entire test (it is enough for this purpose to employ part of the assemblies), one can arrange the assemblies contained in the test in such an order that the mathematical expectation of the length of that portion of the test, which is necessary prior to disclosure of . the fault, will be minimal. In conclusion, we shall give examples of construction of minimal tests. The examples pertain to the network analyzed in Sec. 1. In example 1, the permissible faults are the closing of one contact, in example 2 are that of opening one contact. The assemblies e of the set E are denoted by integers, the binary arrangement of which, written from left to right, is identically equal to e. The notation $0.1 \mid 0 \lor 3 \lor 5 \lor 6$ denotes that the 0-th function differs from the 1-st function (see # table) in theo, 3, 5, and 6 assemblies. ### Example 1. Let us write out all the expressions of the form $e_1^{ij} \bigvee \ldots \bigvee e_{k_{ij}}^{ij}$ ``` 0.1 + 0 \lor 3 \lor 5 \lor 6 1 \cdot 2 [0 \lor 3 \lor 5 \lor 6 \lor 9 \lor 10 \lor 12 \ 2 \cdot 3 \ | 12 0 \cdot 2 |9 \lor 10 \lor 12| 5 V 6 V 9 V 10 1 . 3 0 \lor 3 \lor 5 \lor 6 \lor 9 \lor 10 2 - 4 0 \cdot 3 9 \vee 10 2 \cdot 5 0 \lor 3 \lor 12 1 - 4 0.4 | 5 \vee 6 \vee 12 0 \vee 3 \vee 12 0.5 10 \lor 3 \lor 9 \lor 10 1.5 |5 | 6 | 9 | 10 2 \cdot 6 \mid 5 \vee 6 \vee 9 \vee 10 \vee 12 1 . 6 0 \vee 3 2 \cdot 7 \mid 0 \lor 5 \lor 10 \lor 12 0.6 \mid 5 \lor 6 0 - 7 1.7 3 6 9 2 \cdot 8 \mid 3 \vee 6 \vee 9 \vee 12 0 \lor 5 \lor 9 1.8 | 0 \lor 5 \lor 10 2 \cdot 11 \mid 3 \lor 5 \lor 10 \lor 12 0.8 (3 \lor 6 \lor 10) 0.11 3 > 5 > 9 1.11 0 \lor 6 \lor 9 2 \cdot 12 \mid 0 \lor 6 \lor 9 \lor 12 1.12 | 3 \lor 5 \lor 10 2 \cdot 13 \mid 9 \lor 10 0.12 | 9 \lor 6 \lor 10 1.13 | 0 \vee 3 \vee 5 \vee 6 \vee 12 0.13 | 12 3 \cdot 4 + 5 \lor 6 \lor 9 \lor 10 \lor 12 + 4 \cdot 5 + 0 \lor 3 \lor 5 \lor 6 \lor 9 \lor 10 \lor 12 + 5 \cdot 6 + 0 \lor 3 \lor 5 \lor 6 \lor 9 \lor 10 5 \cdot 7 3 \lor 5 \lor 10 112 4 . 6 3 \cdot 5 \mid 0 \vee 3 5 \cdot 8 \mid 0 \vee 6 \vee 9 3...6 . 5.\/.6.\/.9.\/.10 4.7 | 0 \lor 6 \lor 9 \lor 12 5 \cdot 11 | 0 \lor 5 \lor 10 4.8.3 \lor 5 \lor 10 \lor 12 3 \cdot 7 \mid 0 \lor 5 \lor 10 5 \cdot 12 \mid 3 \vee 6 \vee 9 4 \cdot 11 \mid 3 \lor 6 \lor 9 \lor 12 3 \cdot 8 \mid 3 \vee 6 \vee 9 \mid 5 \cdot 13 \mid e \vee 3 \vee 9 \vee 10 \vee 12 4 \cdot 12 \mid 0 \lor 5 \lor 10 \lor 12 3 \cdot 11 | 3 \lor 5 \lor 10 4 \cdot 13 \mid 5 \vee 6 3 \cdot 12 | 0 \vee 6 \vee 9 |3 \cdot 13| 9 \vee 10 \vee 12 8 \cdot 11 | 5 \vee 6 \vee 9 \vee 10 7.8 \mid 0 \vee 3 \vee 5 \vee 6 \vee 9 \vee 10 6.7 \ 0 \lor 6 \lor 9 8 \cdot 12 \mid 0 \vee 3 7 \cdot 11 \mid 0 \vee 3 6 \cdot 8 \mid 3 \lor 5 \lor 10 8 \cdot 13 \mid 3 \lor 6 \lor 10 \lor 12 7 \cdot 12 | 5 \vee 6 \vee 9 \vee 10 6 \cdot 11 \mid 3 \vee 6 \vee 9 7 \cdot 13 \mid 0 \lor 5 \lor 9 \lor 12 6 \cdot 12 \mid 0 \lor 5 \lor 10 6 \cdot 13 \mid 5 \lor 6 \lor 12 11.13 | 3 \lor 5 \lor 9 \lor 12 ``` The expression T≥, after obvious simplifications, ### becomes $$\begin{aligned} \text{II}\Sigma &= (9 \lor 10) (5 \lor 6) (0 \lor 5 \lor 9) (3 \lor 6 \lor 10) (3 \lor 5 \lor 9) (0 \lor 6 \lor 10) \cdot 12 \cdot \\ & \cdot (0 \lor 3) (3 \lor 6 \lor 9) \cdot (0 \lor 5 \lor 10) (0 \lor 6 \lor 9) (3 \lor 5 \lor 10) = \\ & = (0 \lor 3) (5 \lor 6) (9 \lor 10) \cdot 12 \cdot [(0 \lor 5 \lor 9) (3 \lor 5 \lor 9)] \cdot \\ & \cdot [(0 \lor 5 \lor 10) (3 \lor 5 \lor 10)] \cdot [(3 \lor 6 \lor 10) (0 \lor 6 \lor 10)] \cdot \\ & \cdot [(3 \lor 6 \lor 9) (0 \lor 6 \lor 9)] = (0 \lor 3) (5 \lor 6) (9 \lor 10) \cdot 12 \cdot \end{aligned}$$ $$\begin{array}{l} \cdot \left[(0 \cdot 3 \lor 5 \lor 9)(0 \cdot 3 \lor 5 \lor 10) \right] \cdot \left[(0 \cdot 3 \lor 6 \lor 9)(0 \cdot 3 \lor 6 \lor 10) \right] = \\ = (0 \lor 3)(5 \lor 6)(9 \lor 10) \cdot 12 \cdot \left[(0 \cdot 3 \lor 5 \lor 9 \cdot 10)(0.3 \lor 6 \lor 9 \cdot 10) \right] = (0 \lor 3) \cdot \\ \cdot (5 \lor 6)(9 \lor 10) \cdot 12 \cdot (0 \cdot 3 \lor 5 \cdot 6 \lor 9 \cdot 10) \end{array}$$ By opening up the brackets we obtain $$\Sigma \Pi = 0 \cdot 3 \cdot 5 \cdot 9 \cdot 12 \bigvee 0 \cdot 3 \cdot 5 \cdot 10 \cdot 12 \bigvee 0 \cdot 3 \cdot 6 \cdot 10 \cdot 12 \bigvee 0 \cdot 3 \cdot 6 \cdot 9 \cdot 12 \bigvee 0 \cdot 5 \cdot 6 \cdot 9 \cdot 12 \bigvee 0 \cdot 5 \cdot 6 \cdot 10 \cdot 12 \bigvee 3 \cdot 5 \cdot 6 \cdot 9 \cdot 12 \bigvee 3 \cdot 5 \cdot 6 \cdot 10 \cdot 12 \bigvee 0 \cdot 5 \cdot 9 \cdot 10 \cdot 12 \bigvee 0 \cdot 6 \cdot 9 \cdot 10 \cdot 12 \bigvee 3 \cdot 5 \cdot 9 \cdot 10 \cdot 12 \bigvee 3 \cdot 6 \cdot 9 \cdot 10 \cdot
12.$$ Each term defines a minimal test. ### Example 2. Let us write out again all the expression of the form #### $e_1^{ij}\bigvee\ldots\bigvee e_{k_{ij}}^{ij}$ $1' \cdot 2' + 1 \lor 2 \lor 4 \lor 7 \lor 8 \lor 11 \lor 13 \lor 14 \lor 15$ $6\cdot 1^{\circ}$ [8 \bigvee 11 \bigvee 13 \bigvee 14 \bigvee 15 11.2 11.02\VAV7 1' . 3' $8 \bigvee \Pi$ 113 1/14 1/15 1' . 4' (1 + 3') $13 \lor 14 \lor 15$ 0.4 (8)/11 1'.5' $4 \lor 7 \lor 8 \lor 11 \lor 13 \lor 14 \lor 15$ 6-51 477 $1 \lor 2 \lor 8 \lor 11 \lor 13 \lor 14 \lor 15$ 1' - 6' $0 \cdot 6'$ $11 \vee 2$ 1' . 7' $7 \lor 8 \lor 13 \lor 14 \lor 15$ 7 V 11 $1' \cdot 8'$ $4 \lor 11 \lor 13 \lor 14 \lor 15$ 478 0 - 8' $1' \cdot 9'$ $2 \lor 8 \lor 11 \lor 13 \lor 14 \lor 15$ 0.9' | 12 $1' \cdot 10' \mid 1 \lor 8 \lor 11 \lor 13 \lor 14 \lor 15$ 0.10'[1]1'-11' $2 \vee 4 \vee 11 \vee 13 \vee 14 \vee 15$ 0.11 2V4V8 $1' \cdot 12' \mid 1 \vee 7 \vee 8 \vee 13 \vee 14 \vee 15$ $0.42' | 1 \lor 7 \lor 11$ $1 \cdot 13 \mid 8 \vee 11 \vee 14 \vee 15$ 9 - 13' | 13 $1.418 \lor 11 \lor 13 \lor 15$ 0 . 14' 14 ``` 2". 3" | 1 \ \ 2 \ 4 \ \ 7 \ \ 13 \ \ 14 \ \ 15 | 3" \ 4" | 18 \ \ 14 \ \ 13 \ \ 14 \ \ 15 4-5 14/7/8/41 4.6 11/2/8:41 y. 4 11 V2 V4 V7 V8 V 11 3'.5" [4V7VBV4V5 4' - 7'' 11V2V8V4V5 7 / 8 3' . 6" 2.5 11 V3 4' - 8' 3 . 7 7 V H V 13 V H V 15 14 W I t 2.6 AV7 4' . 9' 3' . 8' 4 \vee 8 \vee 13 \vee 14 \vee 15 2 \vee 8 \vee 11 2-7 11 12 14 11 4'-10' 1 \ \ 8 \ \ 11 2'-8' 11 \lor 2 \lor 7 \lor 8 3' \cdot 9' 2 13 14 14 15 4'-11' 2 V 4 V 11 2'-9' 11 V4 V7 3' \cdot 10' \mid 1 \lor 13 \lor 14 \lor 15 4.12 1 V7 V8 2. M 2V4V7 3' \cdot 11' | 2 \lor 4 \lor 8 \lor 13 \lor 14 \lor 15 4'-13' 8 V 11 V 13 3^{\circ}, 12^{\circ} | 1\sqrt{7} \sqrt{13} \sqrt{14} \sqrt{15} 2-11/11 V7 VE 4.14 8 11 11 14 3' - 18' 14 \ 15 2-12/2/4/11 3'- 14' 13 \ 15 2 \cdot 13 | 1 \lor 2 \lor 4 \lor 7 \lor 13 2.14 1 2 2 7 4 7 7 7 14 5'-6' | 1 \ 2 \ \ 4 \ \ 7 7.4 147778711 6' \cdot 7' + 1 \vee 2 \vee 7 \vee 11 7 · 2 12 \ 7 \ 711 14 \vee 2 \vee 4 \vee 8 5' 7' 14 1/11 6' \cdot 8' 7 W 1 V7 V 11 5 . 8 171/8 6' \cdot 9' 1 7'-11' 2\/4\/7\/8'/11 6'-10'2 5.9 12 V4 V7 7' 12' 1 6'-11' 1 1 1 4 1 8 5'-10' 11 V4V7 7.13 7 11 1 1 5'-11' 2V7V8 6-12 2 7 11 7.14 7 11 11 16 6'-13' 1 \ 2 \ \ 13 5' \cdot 12' | 1 \vee 4 \vee 11 5'-13' | 4 V 7 V 13 6'-14' 1 1 1 2 1 14 5' 14' 4 V 7 V 14 10'-11'|1 \\2\\4\\8 8.9 12 14 18 9' \cdot 10' + 1 \vee 2 9' 11' 4\18 10' - 12' \mid 7 \bigvee 11 8-10-1-74/8 10' - 13' 1 \ \ 13 9' \cdot 12' \mid 1 \vee 2 \vee 7 \vee 11 8-11/2 9' 13' 2 \ 13 10'-14' 1 \ 14' 8.42[1 \lor 4 \lor 7 \lor 8 \lor 11] 8' 13' 4 \ 8 \ 13 9' \cdot 14' \mid 2 \bigvee 14 8-14/4/8/14 12' - 13' \mid 1 \vee 7 \vee 11 \vee 13 13' • 14' | 13 \lefty 14 11-12/11 V 2 V 4 V 7 V 8 V 11 11'. 13' 2 V 4 V 8 V 13 12' \cdot 14' | 1 \vee 7 \vee 11 \vee 14 11'-14' 2 V 4 V 5 V 14 ``` After obvious simplifications, we can write for TV the following: $$II\Sigma = 1 \cdot 2 \cdot 13 \cdot 14!(4 \lor 11)(7 \lor 11)(8 \lor 11)][(4 \lor 8)(7 \lor 8)](4 \lor 7) =$$ $$= 1 \cdot 2 \cdot 13 \cdot 14(11 \lor 4 \cdot 7 \cdot 8)(8 \lor 4 \cdot 7)(4 \lor 7).$$ Transforming this expression, we obtain $$\Sigma\Pi = 1 \cdot 2 \cdot 4 \cdot 8 \cdot 11 \cdot 13 \cdot 14 \bigvee 1 \cdot 2 \cdot 4 \cdot 7 \cdot 8 \cdot 13 \cdot 14 \bigvee 1 \cdot 2 \cdot 7 \cdot 8 \cdot 11 \cdot 13 \cdot 14 \bigvee 1 \cdot 2 \cdot 4 \cdot 7 \cdot 11 \cdot 13 \cdot 14.$$ Each term will define a minimal test. ### 3. Certain Rules for the Construction of Tests We have already seen that the construction of tests reduces to the construction of an expression of the type $\leq \mathbb{T}$. In the general case, to construct a $\leq \mathbb{T}$ it is necessary first to obtain the expression $\mathbb{T} \leq$ and then convert it to the form $\leq \mathbb{T}$. Both these stages are exceedingly laborious. By virtue of these circumstances, it becomes practically impossible to construct minimal tests for arbitrary networks, using an algorithm that does not take into account the peculiarities of the structure of the networks, which realize functions of six or more variables. It must be noted that a direct expanding of the brackets even in a whole series of relatively simple problems leads to a very large number of terms; thus, in the opening of the brackets in example 1 However, the final result contains, as a rule, much fewer terms. In this connection, the question arises of finding simpler , when it is possible: 1) to construct a T\(\geq \) starting with a table; 2) to convert the T\(\geq \) into \(\geq T \), bypassing the direct opening of the brackets with a consequent "reduction of similars," and 3) in the case of construction of a minimal test or any one fully definite test for the elimination of the transformation of T\(\sim \) into \(\geq T \). In the present section we shall formulate briefly these rules. - I. Rules of Construction of \mathcal{T} . 1. In the table of fault functions we discard the rows that consist either entirely of 0's or entirely of 1's, and also the corresponding assemblies. - 2. In the case when the table contains identical rows, we discard all of them together with the corresponding assemblies, leaving one representative of each. We shall disregard from now on the discarded assemblies, assuming that the functions are not defined on them. 3. We choose all the assemblies that have that property, that for each of these there are at least. two functions which assume on these assemblies different values, and on the remaining (which remain after \mathbb{I}_1 and \mathbb{I}_2) identical values. The resultant assemblies exhaust all the one-term factors in the $\mathcal{T} \succeq$ expression. obtained according to item 3. We remove from the set all the pairs of functions (f, f) for which there exists an assembly e_{ik} $(1 \le k \le s)$ such that $f_i(e_{ik}) \ne f_j(e_{ik})$. The resultant set will be denoted by \mathcal{H}' . It is obvious that the construction of a test in a case when a set of pairs \mathcal{H}' is fixed is simpler than for the set of pairs \mathcal{H}' . Let us assume that $\mathbb{H} \le c$ corresponds to the set \mathcal{H}' . Then, obviously, we have $\mathbb{H} \ge e_{i1}e_{i2}\cdots e_{is}\mathbb{H} \le \ell$. In practice it is more convenient to proceed as follows: using the sets $\mathbf{e_{i_1}}$, $\mathbf{e_{i_2}}$, ..., $\mathbf{e_{i_5}}$ one breaks up the set \mathcal{W} into classes in such a way, that the representatives of different classes on a certain assembly $\mathbf{e_{i_k}}(1 \le k \le s)$ assume different values, and the representative of one class on each of the considered assemblies assume one and the same value. Next, for each pair of functions $(\mathbf{f_i}, \mathbf{f_j}) \in \mathcal{W}$ and such that the functions $\mathbf{f_i}$ and $\mathbf{f_j}$ enter into one class, consequently, $(\mathbf{f_i}, \mathbf{f_j}) \in \mathcal{W}$, one constructs the set $\mathbf{E_{ij}}$, etc. 5. Using the rule that $A(A \lor B) = A$, we cross out in the $T \succeq P$ expression the excessive factors. It should be noted here that when item 4 is satisfied, the factors which are absorbed by the terms e_{1_1} , e_{1_2} , ..., e_{1_5} are automatically discarded. II. Rules of Transformation of π_{\leq} into $\leq \pi$. 1. Algebraic Method. Using the distributive law, we carry out the multiplication of the brackets $$(A \lor B) C = AC \lor BC.$$ This is followed by further transformations, in which the identities $A \cdot A = A$, AB = BA, $A \lor B = B \lor A$, $A \lor AB = A$. are taken into account. It becomes frequently convenient here first to group the factors in a suitable manner. 2. The geometric method is based on the relation $\Pi\Sigma\,e_{ij} = \overline{\Sigma\Pi\,\bar{e}_{ij}}.$ In other words, the result of the operation TZ is the complement to the result of the operation ZT on the complement. Thus, it becomes possible to obtain the expression of interest to us by using the supplementary operation to the operation TZ /4/. For this purpose, we consider a "sieve," which has the following form: in a rectangle parallel to the base one draws a total of m straight lines, where m equals the number of different assemblies e1, e2, ..., e of the function $f(x_1, x_2, ..., x_n)$; let us assume that these are numbered as shown in Fig. 8. Next, we separate the segment 1 into two equal parts, segment 2 into four parts, etc.; finally we divide segment m into 2 m equal parts. From segment 1 we remove the first half, we remove the 1-st and 3-rd quarter of segment 2, we remove the 1-st, 3-rd, 5-th, and 7-th eighths from segment 3, etc. discarded part of the i-th segment of the sieve is set in correspondence with the assembly e, and the undiscarded part is set in correspondence with the assembly \overline{e}_{i} (1 \leq i \leq m). To each product $\overline{\mathbb{T}}\overline{e}_{ij}$ we set in correspondence a part of the sieve; for this purpose, all the factors from the product $\mathcal{T}_{i,i}$ are mentally projected on the segment in which is located the factor of the highest rank in the given product, and we take their intersection. The resultant part of the sieve will be called sparated. By carrying out such an operation with each term of STe; we separate from the sieve a certain set of segments. Let us divide the base of the triangle int 2^m parts. To each part of the subdivision, which is not contained in the projection on the base of the separated part of the sieve, we assign an index defined as follows: from an internal point of the given part we draw a perpendicular and take the difference between m and the number of points of intersection of the perpendicular with the sieve, or, what is the same, we count the number of horizontal lines on which the perpendicular does not intersect with the sieve. (See reference /2/ .) It is easy to see that each part of the breakdown of the base, in which an index is defined, corresponds to an elementary test consisting of assemblies corresponding to all
those segments, with which the perpendicular drawn from the internal point of the considered part does not intersect. It is furthermore evident that the length of the elementary test, corresponding to the given part of the breakdown is equal to its index. III. Rules of Construction of a Minimal Test. In the construction of a minimal test it is necessary to choose a certain term from the ΣT , and therefore, in many cases, there is no need for carrying out a complete transformation from $T \Sigma$ to ΣT . This is aided by the following two rules. 1. If the product T∑ breaks up into groups such that the different groups do not have identical assemblies, then in order to obtain a minimal test it is sufficient to construct a minimal test for each group and to take their joining. In the case when the permissible faults are either the closing of one contact or the opening of one contact it is obvious that the minimal test breaks down into two nonintersecting tests: the first is minimal for closing in one contact and the other is minimal for opening in one contact. In other words, in this case the \mathbb{Z} always breaks down at least into two groups without common assembly. This follows from the fact that in the case under consideration the fault functions corresponding to closing do not differ from the initial function on those assemblies in which f(e) = 1 and correspondingly the fault functions corresponding to open do not differ from the initial function on those assemblies where f(e) = 0. 2. Let the expression $\mathbb{T} \leq$ have the form $(e_i \vee e_j) (A_1 \vee e_i e_j B_1) (A_2 \vee e_i e_j B_2) \dots (A_\tau \vee e_i e_j B_\tau) C$, where A_1 , B_1 , A_2 , B_2 , ..., A_{τ} , B_{τ} do not contain the assemblies e_i and e_j and the term C (which has the form TZ) does not contain the assembly e_i (there may not be any brackets in A and B). It is obvious that in the minimal test, owing to the factor $(e_i \lor e_j)$, there should be contained either e_i or e_j ; here it is more convenient to take first e_j , since both e_i and e_j enter symmetrically in all the factors, with the exception of C, while e_j may also enter in C. To prove this we note that if the expression $\Pi \geq_2$ is obtained from the expression $\Pi \leq_1$ by crossing out a certain number of conjunctive terms, then to each test T_1 of the expression $\Pi \leq_1$ there corresponds a test T_2 of the expression $\Pi \leq_2$, with $T_2 \subseteq_1$ (in such a crossing-out, the length of the test can only decrease). Let us consider two cases: a) the element \dot{e}_i is chosen; when e_i is crossed out, $T \leq$ becomes $$\Pi\Sigma_1 := (A_1 \bigvee e_j B_1) (A_2 \bigvee e_j B_2) \dots (A_n \bigvee e_j B_n) C$$: b) the element e, is chosen; when e, is crossed out, TE becomes $$\Pi\Sigma_2 = (A_1 \vee e_i B_1) (A_2 \vee e_i B_2) \dots (A_r \vee e_i B_r) C'.$$ If we now replace e_i by e_j , then the expression $\mathbb{T} \geq_2$ will be the result of crossing out of a certain number of conjunctive elements from the expression and therefore in case b) the test can only be less. 3. Let $\mathbb{T} \leq$ be broken up into groups of factors, with e_{i_1} , e_{i_2} , ..., e_{i_t} being the minimal test of the first group, and e_i^0 being the minimal test of the second group; then a) if e_{i_1} , e_{i_2} , ..., e_{i_t} is the test for the second group, then e_{i_1} , e_{i_2} , ..., e_{i_t} is a minimal test for the entire product; b) if any minimal test of the first group is not a test for the second group, then e_i^0 , e_{i_1} , ..., e_{i_t} is a minimal test Fig. 8 Fig. 9 for the entire product. The given rules do not exhaust other possible measures that facilitate the compilation of the test. To the contrary, searches for effective rules make up one of the important problems in test theory. Certain other measures, which permit a simpler construction of the test, are described in the following chapter. Example. In conclusion let us give an example of the construction of a minimal test by the two methods, in the case when the permissible faults are the opening or the closing of a single contact. Taking into account rule III, it is enough to construct tests for the case of closing and opening separately. The first method illustrates the rules I3, I4, I5, III, III2, and III3, whereas the second explains the geometric method of constructing tests. Let us consider the network shown in Fig. 9, which realizes the function $f_0(x, y, z, w) = xyzw \bigvee xyzw \bigvee xyzw \bigvee xyzw \bigvee xyzw.$ Figs. 10 and 11 show the states of the networks for different values of the assemblies; the asterisks mark those contacts, the faults of which (closing in Fig. 10 and opening in Fig. 11) convert the network to the opposite position (in the sense of admittance). Fig. 10 The states of the networks for different values of the assemblies, shown in Figs. 10 and 11, can be gathered in a single table of fault functions (Table 2) | united by the same | igalican pertenden arra | | agaan Mi | | • | - Areasterna | 0 | 1 | or and an arrangement of the second | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1' | 2. | 3' | 4 | 5 | 6' | 7 | 8. | 9' | 10' | 11' | 1: | |--|-------------------------|----|-------------|---------|-----------|---|----|----------------|-------------------------------------|---|----------|---|--|-------------------------------|---|---|----------------------|-------------------|----|-------------------------
--|---|----|----------------------|---|----|---|----|----|---------------------------------------|--------------|--------------| | *************************************** | tane in the last | | | bir Mer | - | _ | | | _ | | | | | | | | | | | | | | | | 1 | _ | | | | · · · · · · · · · · · · · · · · · · · | <u> </u>
 | <u> </u>
 | | The state of s | (0, | () | . (|) , | 1) | - | 0 | 1 | - | | | 1 | | <u> </u> | - | 1 | | 1 | | 1 | | | | | _ | _ | | | | | 1 | <u> </u> | | | (0, | () | ,] | • • | 0) | - | 0 | | | 1 | | 1 | | | | 1 | | | 1 | | | | | | | | | | | | | | | 1000 | (₩, | 1 | , (|), | O) | - | () | | - | | | | | - | 1 | | | | | 1 | | | | | | | | | | | | | | - | (0, | 1 | , (|), | 1) | - COMPANIES OF | 0 | | - | | | - | and the state of t | 1 | | - | of the second second | | | e, Aires, passe, amilia | | | | | | | | | | | | | | | (0, | 1 | , | ١, | 1) | - | O | 1 | Appropriate as | - | | 1 | - Constitution of | | - | - | 1 | | | | | | | | | | | | | | | | | | (1, | 0 | , (|), | 0) | Canada Sandana | Ü | | and designation of | 1 | 1 | | | - | | 1 | | | | i | A CONTRACTOR OF THE PARTY TH | | | | , | | | | | | | | | | (1. | () | , (|), | 1) | Section of Contrasts | () | | - | | | | | | | | | 1 | | - | on the second designation of the second | | | - Constitute (Annie) | | | | | | | | | | | (1, | () | | ۱, | 1) | *************************************** | 0 | 1 | - | | | | 1 | | Ì | | | | | | - | | | | | | | | | | | | | | (1, | 1 | ; |), | 0) | | o | | - |] | | | 1 | | | | | | | | - | | | | | | - | | | | | | | | (1, |] | 9 | ١, | 0) | | () | | | | 1 | - | · Branks, sam deale | · Caraca province de la Maria | - | - | 1 | Armite desiration | | | | | | | | | | | 1 | | | | | | (1, | ì | , | 1. | 1) | | O | - | | | 1 | | | | 1 | - | | V | 1 | | *Liver of the liver live | | | | | | | - | | | | | | | (0, | () | ¥ | υ, | U) | | 1 | | - | *************************************** | | | | | | | | | - | 1 | 0 | | 0 | | | | 0 | | | | () | | | | (0, | C | n'iversite: | Ι, | 1) | |) | - rougement or | | A | <u> </u> | | | - | | | | | | | | o | | | 0 | | | | 0 | | | 0 | | , | ((1, | 1 | , | 1, | (1) | | 1 | | | 4 0.70 p.~ | | İ | | | | 4 | | | | | 0 | *************************************** | 0 | | | | | 0 | - | | | 0 | | | (1, | | - | | 4/-/140-4 | | | | | ^- | | | | - | ! | 1 | | | | | 0 | | | 0 | | | | | 0 | 1 | | U | | , | (1, | į | , | ι), | ł į | | 1 | - | | | | | | 1 | 1 | ĺ | | | | <u> </u> | Ī | 0 | Ī | | | 0 | | | | () | 0 | | Let us consider first the cases of closing (Fig. 10). We see that the single-term factors will be assemblies 5 and 9. They represent the following breakdown of the fault functions ``` 2 · 3 2 \vee 8 \vee 12 \vee 14 1 \cdot 2 \mid 1 \lor 2 \lor 7 \lor 11 \lor 12 0.111 V7 V11 2 . 4 1 V 7 V 12 1 \ 7 \ 8 \ 11 \ 14 0.2 2 \vee 12 2.5 2 V 11 0.3 1.4 2V11 8 V 14 2 \lor 4 \lor 12 \lor 15 2 - 7 0.4 1 \lor 2 \lor 7 1.5 4 V 7 V 12 2 \cdot 8 1 V 8 V 12 11 1/4 1/7 1/11 1/15 1 . 7 0.5 11 \vee 12 2 \lor 7 \lor 12 \lor 14 2 \cdot 9 1.8 | 2 \vee 7 \vee 8 \vee 11 0.7 4 ∨ 15 2 \cdot 11 \mid 12 \bigvee 15 1 \cdot 9 0 \cdot 8 11 1/ 11 1/ 14 1 \lor 2 \lor 8 1 V 2 V 4 V 8 V 12 2 . 12 0.9 7 14 1.11 | 1 \vee 2 \vee 7 \vee 11 \vee 15 1 - 12 | 4 \vee 7 \vee 8 \vee 11 0 - 11 2 V 15 0.12 | 1 \vee 4 \vee 8 5 - 7 | 4 \ \ 11 \ \ 12 \ \ 15 6.5 HV2V7V11V12 3.4 | 1 \vee 2 \vee 7 \vee 8 \vee 14 11 \ 2 \ 8 \ \ \ \ \ \ \ \ 12 5 \cdot 8 4.7 |1 \lor 2 \lor 4 \lor 7 \lor 15 18 \vee 11 \vee 12 \vee 14 5.9 | 7 \vee 11 \vee 12 \vee 14 4 . 8 17 V 8 3 . 7 4 \lor 8 \lor 14 \lor 15 5 · 11 | 2 V 11 V 12 V 15 4.9 1 2 14 3 - 8 1 V 2 V 14 5.12 | 1 \lor 4 \lor 8 \lor 11 \lor 12 4 - 11 1 1 7 7 15 3 \cdot 9 \mid 7 \vee 8 4 \cdot 12 | 2 \vee 4 \vee 7 \vee 8 3 \cdot 11 \mid 2 \vee 8 \vee 14 \vee 15 3 \cdot 12 | 1 \vee 4 \vee 14 9 - 11 | 2 \vee 7 \vee 14 \vee 15 8 \cdot 9 \mid 1 \lor 2 \lor 7 \lor 8 \lor 14 7 - 8 \mid 1 \lor 2 \lor 4 \lor 8 \lor 15 9 \cdot 12 | 1 \lor 4 \lor 7 \lor 8 \lor 14 8 \cdot 11 | 1 \vee 8 \vee 15 7.9 | 4 \lor 7 \lor 14 \lor 15 7 \cdot 11 | 2 \vee 4 8 \cdot 12 \mid 2 \vee 4 7 \cdot 12 | 1 \vee 8 \vee 15 11 - 12 | 1 \vee 2 \vee 4 \vee 8 \vee 15 ``` Thus, in the case of closing we obtain (taking I_{ϵ} into account) the following expression for $\pi \leq 1$ $\begin{array}{c} \Pi\Sigma = 5 \cdot 9 (2 \lor 12) \ (8 \lor 14) \ (11 \lor 12) \ (4 \lor 15) \ (7 \lor 14) \ (2 \lor 15) \ (2 \lor 11) \\ \cdot (12 \lor 15) \ (7 \lor 8) \ (2 \lor 4) \ (1 \lor 7 \lor 11) \ (1 \lor 2 \lor 7) \ (1 \lor 2 \lor 8) \ (1 \lor 4 \lor 8) \\ \cdot (1 \lor 7 \lor 12) \ (1 \lor 11 \lor 14) \ (1 \lor 8 \lor 12) \ (1 \lor 2 \lor 14) \ (1 \lor 4 \lor 14) \ (1 \lor 7 \lor 15) \\ \cdot \ (1 \lor 8 \lor 15) \end{array}$ Let us now proceed to the construction of the minimal test. First Method. Since $$(11 \lor 2)(11 \lor 12) = 11 \lor 2 \cdot 12,$$ $$(15 \lor 2)(15 \lor 12) = 15 \lor 2 \cdot 12,$$ $$(1 \lor 7 \lor 2)(1 \lor 7 \lor 12) = 1 \lor 7 \lor 2 \cdot 12,$$ $$(1 \lor 8 \lor 2)(1 \lor 8 \lor 12) = 1 \lor 8 \lor 2 \cdot 12,$$ we obtain $$H\Sigma = 5 \cdot 9 \left((2 \lor 12) (41 \lor 2 \cdot 12) (15 \lor 2 \cdot 12) (1 \lor 7 \lor 2 \cdot 12) (1 \lor 8 \lor 2 \cdot 12) \right) \times \left((2 \lor 4) (1 \lor 2 \lor 14) (8 \lor 14) (4 \lor 15) (7 \lor 14) (7 \lor 8) (1 \lor 7 \lor 11) \times \left((1 \lor 4 \lor 8) (1 \lor 11 \lor 14) (1 \lor 4 \lor 14) (1 \lor 7 \lor 15) (1 \lor 8 \lor 15) \right).$$ Since 2 and 12 enter in the first curly bracket symmetrically, and only 2 enters into the second bracket, then according to III_2 the minimal test should contain 2. In addition, according to III_1 , the minimal test contains 5 and 9. After choosing the indicated elements we remove from the IIZ all the factors containing these elements as terms. We obtain $$\Pi\Sigma' = (11 \lor 12) (15 \lor 12) (1 \lor 7 \lor 12) (1 \lor 8 \lor 12) (8 \lor 14) (4 \lor 15) \cdot \\ \cdot (7 \lor 14) (7 \lor 8) (1 \lor 7 \lor 11) (1 \lor 4 \lor 8) (1 \lor 11 \lor 14) (1 \lor 4 \lor 14) \cdot \\ \cdot (1 \lor 7 \lor 15) (1 \lor 8 \lor 15).$$ Taking into consideration that $(7 \lor 8) (8 \lor 14) (7 \lor 14) = 7 \cdot 8 \lor 7 \cdot 14 \lor 8 \cdot 14,$ $(1 \lor 7 \lor 12) (1 \lor 7 \lor 15) (1 \lor 8 \lor 12) (1 \lor 8 \lor 15) = 1 \lor 7 \cdot 8 \lor 12 \cdot 15,$ $(1 \lor 4 \lor 8) (1 \lor 4 \lor 14) = 1 \lor 4 \lor 8 \cdot 14,$ $(1 \lor 11 \lor 7) (1 \lor 11 \lor 14) = 1 \lor 11 \lor 7 \cdot 14,$ we obtain $$\Pi\Sigma' = \{ \{ (11 \lor 12) (15 \lor 12) (4 \lor 15) \} \{ 7 \cdot 8 \lor 7 \cdot 14 \lor 8 \cdot 14 \} \} \cdot \{ (1 \lor 7 \cdot 8 \lor 12 \cdot 15) (1 \lor 4 \lor 8 \cdot 14) (1 \lor 11 \lor 7 \cdot 14) \}.$$ The second curly bracket has a minimal test 1. The first curly bracket breaks down into two factors without common elements, and therefore its minimal test is a combination of the minimal tests for these factors (III₁). The first factor has the following minimal tests: 4, 12; 15, 11; and 15 12; the second factor has the following minimal tests: 7, 8; 7, 14; and 8, 14. Thus, the first curly bracket has 9 minimal tests; and none of these is a test for the second curly bracket. Hence by III3 the minimal test for TZ' is the joining of any minimal test for the first curly bracket, let us say 11, 15, 7, 8, and the minimal test for the second curly bracket, i.e. 1. We have the following minimal test 1, 2, 5, 7, 8, 9, 11 u 15, In the case of opening (see Fig. 11) we have the following one-term factors: 0, 3, 6, 10, and 13. These assemblies carry out the complete breakdown of all the fault functions for openings. In fact $$0 \begin{cases} 0, 2', 4', 5', 8', 9', 10', 12' \\ 1', 3', 7', 11' \end{cases} 3 \begin{cases} 0, 4', 8', 10' \\ 2', 5', 9', 12' \end{cases}$$ $$6 \begin{cases} 7', & 11' \\ 1', & 3' \end{cases} \begin{cases} 2', & 5', & 9' \\ 12' \end{cases} \begin{cases} 0, & 4', & 10' \\ 8' \end{cases}$$ $$10 \begin{cases} 3' \\ 1' \end{cases} \begin{cases}
0, & 10' \\ 4' \end{cases} \begin{cases} 2', & 5' \\ 9' \end{cases} = 13 \begin{cases} 5' \\ 2' \end{cases} \begin{cases} 0, & 7' \\ 10' \end{cases} \begin{cases} 11' \end{cases}$$ From this we have $$\Pi\Sigma := 0 \cdot 3 \cdot 6 \cdot 10 \cdot 13.$$ Consequently 0, 3, 6, 10, and 13 is the only minimal test. Note. The process of constructing a test usually contains a large number of calculations, and therefore it is sensible to verify in the end whether the constructed set of assemblies is actually a test. For this purpose, using the constructed assemblies, one breaks down the fault functions: if the break down is complete, i.e., for each pair $(f_1, f_j) \in \mathcal{H}$ there exists in the constructed set an assembly such that $f_1(e) \neq f_j(e)$, we have a test. In the opposite case the set is not a test. An example of such a verification was given in the example considered. Second Method. Starting out with the expression for $\mathbb{T} \geq$ (see p. 291 of source) and using the description \mathbb{T}_2 , we obtain the sieve shown in Fig. 12. For the purpose of economy of space, the sieve is cut up into four parts. To restore the initial picture it is necessary to consider each lower rectangle as a | in
The second se | aportagione oriente e
contrata anomaline | | | AND SECURITY OF THE O | Section and Section and Section 2 | | |--|--|---|---|--
--|----------------------------| | in the second se | 1 | | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | articles services who | the section of the control co | | | Machinelator a | e e mante anya seria da e mante anya seria da e mante anya seria da e mante anya seria da e mante anya seria d
Seria da esta d | ر موسول المراجع الم | | | | • | | Control of the Contro | anger with with the same of th | emberke street, party | arche agence once on reco | THE PARTY SERVICES AND SERVICES | | 1000 | | gryss an | gyamandikana.
gyangkanakka | | | | | | | 81757 6 76 | | 6 | 7 | | | in no | | 1000 | Vander - Annegenbergehoodly (Mar. 1) ter 10° vertil
* Aggregie er Franklik
* Aggregie er Franklik
Aggregie er Tydel | gera press, en metr, en sett bir drot
geraffendeligheitet er mennetisk
sellen harvetet
deuen bereitet | | | | entale
entale
entale | | S where signs again the second | andaras assentes endant assen | nandi nandi | o uskajih delekto usten
16 dejari sisten usten dina di | THE CHARLES STATE OF THE PARTY. | Transie State Spale State State State | | direct continuation of the rectangle located above it. In Fig. 12 the heavy dotted line and the heavy segments indicate the separated subset of the sieve. One can be satisfied with the construction of not a minimal test, but a test which is sufficiently good in that sense that its length does not exceed too strongly the length of the minimal test. This question has a greater significance if the construction of the indicated test is essentially simpler than the construction of the minimal test. We shall now indicate how, starting out with the TE expression, one can rather simply construct an test which is quite satisfactory. However, the question of how much this test differs from the minimal one remains moot. The construction of the test reduces to the following. - 1. In the π expression we choose the element e_{i_1} , which is encountered in the largest number of factors (if there are a few of them, we take anyone of these). - 2. We cross out from the TZ expression the factors which contain the chosen element e_{il} and obtain TZ'. If TZ is empty, then the test is e_{il}. If is not empty, then applying items 1 and 2 to the expression, we obtain e_{i2}, etc. Thus, we arrive at a test e_{il}, e_{i2}, ..., e_{it}. ## 4. Construction of Tests for Dual Systems. In the theory of relay-contact networks, sometimes, knowing a netwick \mathcal{N}_1 , which realizes the function $f_1(x_1, x_2, \dots, x_n)$, it is possible to construct by a simple method a network \mathcal{N}_2 , which realizes a certain function $f_2(x_1, x_2, \dots, x_n)$. The question arises whether it is possible in some cases, knowing the test T for the network Ω_1 , to find a test T for a certain network Ω_2 and bypass laborious calculations. To formulate the result let us give a series of definitions. Definition. The function $f^* = f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ is called dual to the function $f(x_1, x_2, \dots, x_n)$. Definition. A network Ω is called *planar of* the network which is obtained from Ω by joining a source circuit between the poles can be homomorphically placed in a plane. Definition. A network \mathcal{N}^* is called dual with respect to the planar network \mathcal{N} if it is constructed in the following manner. The planar network $\mathcal N$ together with the source link breaks up the plane into regions. We choose in each plane one point — the vertices of the future network. For the poles of $\mathcal N$ * we take those vertices, which correspond to the regions that have the source circuit as part of the boundary. Next, each two vertices of "network $\mathcal N$ *" is joined by means of contacts $\widetilde{\mathbf x}_{i_1}, \widetilde{\mathbf x}_{i_2}, \ldots, \widetilde{\mathbf x}_{i_p},$ where $\widetilde{\mathbf x}_{i_1}, \widetilde{\mathbf x}_{i_2}, \ldots, \widetilde{\mathbf x}_{i_p}$ are all the contacts located on the boundary between the corresponding regions; if both vertices are poles of $\mathcal N$ *, we join them with the source circuit. Example. Fig. 13 shows by means of solid lines the network M, and the dual network M* is shown dotted. From the definition it follows that $\mathcal{A}*$ is a planar network. As regards the dual networks, the following theorem is known, obtained by C. Shannon [7]. Theorem. If a function $f(x_1, x_2, ..., x_n)$ is realized by a planar network \emptyset , then the dual network \emptyset * realizes the dual function $f^*(x_1, x_2, ..., x_n)$. Proof. Let us run briefly through the proof of this theorem. Let the network \mathbb{R}^* realize the function $f'(x_1, x_2, \ldots, x_n)$. Let us consider the arbitrary assembly $\alpha_1, \alpha_2, \ldots, \alpha_n$. Two cases are possible. 1) $f(\alpha_1, \alpha_2, \ldots, \alpha_n) = 1$. This means that in the network $\mathbb N$ there is a path that joins the poles $\underline a$ and $\underline b$, and in the relay states $\alpha_1, \alpha_2, \ldots, \alpha_n$ all the contacts along this path are closed. Corresponding to this path in the network $\mathbb N^*$ is a set of contacts (of equal designation as the contacts of the path considered). With this, if all these contacts are open, and this takes place for the relay states $\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_n$, then the network $\mathbb N^*$ is open and, consequently, $f'(\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_n) = 0$. 2) $f(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0$. In this case, for the state of the relays $\alpha_1, \alpha_2, \ldots, \alpha_n$ the network is open. It follows therefore that there exists a path in the network Ω *, joining the poles a' and b'. With this, this path passes through the open contacts of the network Ω . The latter means that at the relay states $\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_n$ all the contacts on the constructed path are closed. We obtain $$f'(\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n) = 1.$$ Thus, in both cases $$f'(x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n)$$ or $$f'(x_1, x_2, \ldots, x_n) = f(x_1, x_2, \ldots, x_n) = f^*(x_1, x_2, \ldots, x_n).$$ The theorem proved makes it possible to construct from a planar realization of the function $f(x_1, x_2, \dots,$ x_n) a network for the function $f(x_1, x_2, ..., x_n)$. Assume that a planar network $\mathcal N$ realizes the function $f(x_1, x_2, \ldots, x_n)$. We denote by M the set of faults of the network $\mathcal N$ (closing or opening of contacts). We have seen that to each fault a $\mathcal E$ M there corresponds a fault function $f_a(x_1, x_2, \ldots, x_n)$. The fault a breaks down the set of all the contacts of the network $\mathcal N$ into three subsets: k_1, k_2, \ldots, k_3 , where k_1 consists of the contacts which are short circuited, k_2 of the open contacts, and k_3 of the remaining contacts. It is obvious that corresponding to this breakdown of the contacts of the network $\mathcal N$ is a breakdown of the contacts of the network $\mathcal N$ is a breakdown is generated by dual correspondence). Let us consider the fault a* (dual to the fault a) of the network \mathcal{N} *, at which all the contacts of the set k_1 are open, the contacts of set k_2 are short circuited, and the remaining ones are in proper working order. We denote by M* the set of faults a* of the network \mathcal{N} *, where a runs through the set M. From the preceding theorem it follows that the fault function $f_{a*}^*(x_1, x_2, \dots, x_n)$ of the network \mathcal{N} *, corresponding to the fault a*, is $$f_{a\bullet}^*(x_1, x_2, \ldots, x_n) = [f_a(x_1, x_2, \ldots, x_n)]^*.$$ It follows therefore that if $f_a(x_1, x_2, \dots, x_n)$ is the fault function of the network $\mathcal O$, then the fault function $f_{a*}^*(x_1, x_2, \dots, x_n)$ for
the fault a* of the network $\mathcal O$ * is dual to $f_a(x_1, x_2, \dots, x_n)$. Let \mathcal{M} be the set of different fault functions of the network \mathcal{N} corresponding to the faults \mathcal{M} . Then, denoting by \mathcal{M}^* the set of fault functions of the network \mathcal{N}^* corresponding to the faults \mathcal{M}^* . Let \mathcal{M}^* be a certain subset of unordered pairs of functions (f_a, f_b) of the set \mathcal{M} , excluding the pairs (f_a, f_b) where $f_a = f_b$. We place this subset in correspondence with the subset \mathcal{M}^* of the pairs (f_{a*}^*, f_{b*}^*) of the set \mathcal{M}^* . Obviously, \mathcal{M}^* does not contain pairs of the form (f_{a*}^*, f_{b*}^*) where $f_{a*}^* = f_{b*}^*$, since we would have from the foregoing result $(f_a)^* = (f_b)^*$ or $f_a = f_b$, which contradicts the definition of the set \mathcal{M}^* . Theorem. Let $T = \{(\alpha_1, \alpha_2, ..., \alpha_n)\}$ be a test relative to the subset \mathcal{H} for the network and then $T^* = \{(\overline{\alpha}_1, \overline{\alpha}_2, ..., \overline{\alpha}_n) \text{ is a test realtive to the subset } \mathcal{H}^*$ for the network \mathcal{H}^* , and vice versa. Proof. In fact, let $(f_a(x_1, x_2, ..., x_n), f_b(x_1, x_2, ..., x_n)) \in \mathcal{M}$. Since T is a test, there exists an assembly $(\alpha_1, \alpha_2, ..., \alpha_n) \in T$ such that Fig. 14 Fig. 15 Fig. 16. Fig. 17a Fig. 16b $$f_a(a_1, a_2, \ldots, a_n) \Rightarrow f_b(a_1, a_2, \ldots, a_n).$$ From this we obtain $$f_a(\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n) \neq f_b(\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n)$$ CI $$[f_a(\bar{a}_1, \ \bar{a}_2, \ldots, \ \bar{a}_n)] * = [f_a(\bar{a}_1, \ \bar{a}_2, \ldots, \ \bar{a}_n)] *.$$ Taking into consideration the connection between the fault functions of the network \hbar with the fault functions of the network \hbar , we obtain $$f_{a*}^*(\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n) \neq f_{b*}^*(\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_n).$$ Consequently, T^* is a test relative to $\mathcal{O}2^*$ for the network $\mathcal{O}D^*$. The inverse statement follows from the following relations: Corollary. Corresponding to the minimal test with respect to $\mathcal N$ of the network $\mathcal N$ is a minimal test with respect to $\mathcal N*$ of the network $\mathcal N*$. Example. For the sake of illustrating the proved theorem, let us give an example in which we construct in parallel a test for a planar network $\mathcal N$ and a dual network $\mathcal N^*$, in the case when the permissible fault is the closing or opening of some single contact. Attention should be called here that the closing of contact in network $\mathcal N$ corresponds to opening of contact in network \mathcal{O} * and vice versa. As in the preceding examples, cases of closing and opening of the contacts are independent, and are therefore analyzed separately. Network M (Fig. 14) realizes the function $$S_{1, \, 3, \, 4, \,}(x, \, y, \, z, \, w) = x \tilde{y} \tilde{z} w \bigvee x \tilde{y} z \tilde{w} \bigvee \langle x \tilde{y} z \tilde{w} \rangle z$$ while network \mathcal{D}^* (Fig. 15), which is dual to network realizes the function $$S_{2,4}(x, y, z, w) = x\bar{y}zw \vee xyzw \vee \vee xyz\bar{w} \vee x\bar{y}zw \vee x\bar{y}z\bar{w} \vee xyz\bar{w} \vee xyzw$$ The fault functions in the case of closing (network N) are shown in Fig. 16, while the fault functions for the case of opening (network N*) are shown in Fig. 17. By gathering together the states of the networks for different values of the assemblies shown in Fig. 16, we obtain a table for the fault functions for closing (Table 3), Similarly, by gathering the states of the networks for different values of the assemblies shown in Fig. 17, we obtain a table of fault functions for opening (see Table 4). Table 3 | CALLED COMPANY CAN FALL | (x, y, z, w) | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 18 | 14 | |--|--------------|----|--
--|--|---|---|---|---|--|---|--|---|--------------------------------------
--|--| | A CREATING THE PROPERTY OF THE PARTY | (0, 0, 0, 0) | () | e and reserved | - | y constant of the second | | | | | TO SERVICE STREET SERVICES | | 1 | MAY HALVOOR SAMESTAN AND | · garage | *************************************** | and the state of t | | and the state of t | (0, 0, 1, 1) | 0 | and the special state of s | | - | 1 | | 1 | 1 | all the section of the section of | 1 | of real and the second | | andre andre speninsker angestisser a | and the second s | and a second section of the second section of | | | (0, 1, 0, 1) | 0 | 1 | The state of s | Quantities of the latest th | 1 | 1 | 1 | | And the state of t | | | | | | | | • | (0, 1, 1, 0) | 0 | THE PARTY NAMED IN COLUMN TO SERVICE ASSESSMENT OF THE PA | | | - | • | | - | To a Canada Park Andrews | 1 | 1 | 9 | I I | | And Control of the Co | | | (1, 0, 0, 1) | 0 | part part | 104 | 1 | 1 | | | | | | The second secon | | | | And and a second | | | (1, 0 1, 0) | 0 | | | Commission of the o | | | | 1 | 1 |) | And the second s | | | | C Land Company | | | (1, 1, 0, 0) | 0 | 1 | | | | 1 | - | | 1 | | 1 | | | | | $f_2 = f_8 \qquad \qquad f_{13} = f_{14}$ | (x, y, z, w) | 0 | 1' | 2′ | 3′ | 4' | 5′ | 6′ | 7' | 8′ | 9, | 10′ | 11' | 12' | 13′ | 14' | |--------------|--|--|---|---|---|--|--|---|---
---|--|---|--|---
--| | (1, 1, 1, 1) | 1 | | | | | | | | | | 0 | | 0
: | 0 | 0 | | (1, 1, 0, 0) | 1 | | | | 0 | | o | o | | 0 | | | | | | | (1, 0, 1, 0) | 1 | 0 | | | o | 0 | 0 | | | | | | | | | | (1, 0, 0, 1) | 1 | | | | | | | | <u></u> | 0 | 0 | 0 | 0 | | | | (0, 1, 1, 0) | 1 | 0 | o | o | 0 | | | | | <u></u> | | | | | | | (0, 1, 0, 1) | 1 | | | | | <u> </u> | | o | o | 0 | 0 | | | | | | (0, 0, 1, 1) | 1 | 0 | <u>-</u> | | İ | 0 | | | 0 | İ | 0 | 1 | | | Ì | | ֡ | (1, 1, 1, 1)
(1, 1, 0, 0)
(1, 0, 1, 0)
(1, 0, 0, 1)
(0, 1, 1, 0)
(0, 1, 0, 1) | (1, 1, 1, 1) 1
(1, 1, 0, 0) 1
(1, 0, 1, 0) 1
(1, 0, 0, 1) 1
(0, 1, 1, 0) 1
(0, 1, 0, 1) 1 | (1, 1, 1, 1) 1 (1, 1, 0, 0) 1 (1, 0, 1, 0) 1 (1, 0, 0, 1) 1 (0, 1, 1, 0) 1 (0, 1, 0, 1) 1 | (1, 1, 1, 1) 1 (1, 1, 0, 0) 1 (1, 0, 1, 0) 1 (1, 0, 0, 1) 1 (0, 1, 1, 0) 1 (0, 1, 0, 1) 1 | (1, 1, 1, 1) 1 (1, 1, 0, 0) 1 (1, 0, 1, 0) 1 (1, 0, 0, 1) 1 (0, 1, 1, 0) 1 (0, 1, 0, 1) 1 | (1, 1, 1, 1) 1 0 (1, 1, 0, 0) 1 0 (1, 0, 1, 0) 1 0 (1, 0, 0, 1) 1 0 (1, 0, 0, 1) 1 0 (1, 0, 0, 1) 1 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 (1, 0, 0, 1) 0 0 | (1, 1, 1, 1) 1 0 (1, 1, 0, 0) 1 0 (1, 0, 1, 0) 1 0 0 (1, 0, 0, 1) 1 0 0 (0, 1, 0, 1) 1 0 0 0 | (1, 1, 1, 1) 1 0 0 (1, 1, 0, 0) 1 0 0 0 (1, 0, 1, 0) 1 0 0 0 0 (1, 0, 0, 1) 1 0 0 0 0 (0, 1, 1, 0) 1 0 0 0 0 (0, 1, 0, 1) 1 0 0 0 0 | (1, 1, 1, 1) 1 0 0 0 (1, 1, 0, 0) 1 0 0 0 0 (1, 0, 1, 0) 1 0 0 0 0 (1, 0, 0, 1) 1 0 0 0 0 (0, 1, 1, 0) 1 0 0 0 0 (0, 1, 0, 1) 1 0 0 0 0 | (1, 1, 1, 1) 1 0 0 0 (1, 1, 0, 0) 1 0 0 0 0 (1, 0, 1, 0) 1 0 0 0 0 (1, 0, 0, 1) 1 0 0 0 0 (0, 1, 1, 0) 1 0 0 0 0 (0, 1, 0, 1) 1 0 0 0 0 | (1, 1, 1, 1) 1 0 0 0 0 0 (1, 1, 0, 0) 1 0 0 0 0 0 0 (1, 0, 1, 0) 1 0 0 0 0 0 0 (1, 0, 0, 1) 1 0 0 0 0 0 0 (0, 1, 0, 1) 1 0 0 0 0 0 0 0 | (1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""></t<></td></t<></td></t<></td></t<> | (1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""></t<></td></t<></td></t<> | (1, 1, 1, 1) 1 0 <t< td=""><td>(1, 1, 1, 1) 1 0 <t< td=""></t<></td></t<> | (1, 1, 1, 1) 1 0 <t< td=""></t<> | $f_2' = f_3', \qquad f_{13}' = f_{14}'$ Let us construct expression HY Let us construct expression $\Pi\Sigma$ $$0 \begin{cases} 10, 12, 13 \\ 0, 1, 2, 4, 5, 6, 7, 8, 9, 11 \end{cases}$$ $$6 \begin{cases} 10, 12 \\ 13 \end{cases} \begin{cases} 9, 11 \\ 0, 1, 2, 4, 5, 6, 7, 8 \end{cases}$$ 15 $$\begin{cases} 10', 12', 13' \\ 0, 1', 2', 4', 5', 6', 7', 8', 9', 11' \end{cases}$$ = $\begin{cases} 10', 12' \\ 13', \end{cases}$ $\begin{cases} 9', 11' \\ 0, 1', 2', 4', 5', 6', 7', 8', \end{cases}$ $$9 \begin{cases} 1, 2, 4 \\ 0, 5, 6, 7, 8 \end{cases}$$ $$II\Sigma = 0.6.9 (10 \lor 12) (3 \lor 10) (5 \lor 12)$$ $II\Sigma = 6.9.15 (3 \lor 5) (5 \lor 12) (3 \lor 10)$ $$\text{RI}\Sigma = 6 \cdot 9 \cdot 15 \ (3 \lor 5) \ (5 \lor 12) \ (3 \lor 10)$$ $$(5 \lor 10) (3 \lor 5) (3 \lor 12)$$ (3 $$\bigvee$$ 12) (10 \bigvee 12) (5 \bigvee 10, The expressions for WZ go into each other when the assemblies are replaced by their duals. It follows therefore that each test of one expression there corresponds a test of the other expression, and vice versa. For the case of opening, the fault functions are shown in Fig. 18, and for the case of closing, the fault functions are shown in Fig. 19. Gathering together the states of the networks for different values of the assemblies shown in Fig. 18, we obtain the fault functions for the constructed functions (Table 5). Similarly, gathering together the states of the networks for different values of the assemblies shown in Fig. 19, we obtain Table 6 for the fault functions. (0.9.01) 3, 5, 8, 9, 10, 11' Fig. 18 Fig. 19 Fig. 18" Fig. 18*** F1g. 19''' Table 5 | <u> </u> | | | | Ī | | | | Ī | 1 | | |----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------------|--------------|--------------| | | ** | | 0 | | | | | | | | | - | 30 | | | 5 | | | | | | | | - | 13 | | | | | 0 | | | 0 | | | - | grad
grad | 0 | 0 | | | 0 | | | | | | - | 10, | 0 | | | 0 | | G | 0 | | | | ŀ | | 0 | | 0 | | 0 | | | | | | | šo | 0 | 0 | 0 | Û | | | | | | | 1 | ì~ | | | C | 0 | | | | 0 | | | Ì | ω, | | | | | 0 | 0 | 0 | | | | | ີດ | 0 | | | | 0 | 0 | | | | | | ব | | 0 | <u> </u> | | 0 | | | | | | | çõ | 0 | _ | | | | | | | | | | Š | _ | _ | | | | . | 0 | | | | | - | _ | _ | _ | 0 | | 0 | | 0 | | | | 0 | - | , p< | - | | - | | , , , , , , , , , , , , , , , , , , , | | | | | w) | 1 | 6 | (0, 1, 0, 0) | (0, 1, 1, 1) | (1, 0, 0, 0) | (1, 0, 1, 1) | (1, 1, 0, 1) | (1, 1, 1, 0) | (1, 1, 1, 1) | | | ** | 0,0 | 0, 1 | 1, 0 | 1, 1 | 0,0 | 0, 1 | 1,0 | - | 1, | | | (x, y, s, w) | (0, 0, 0, 1) | (0, 0, 1, 0) | (0) | (0) | 12, | ;
; | (1, | <u> </u> | <u> </u> = | | | 1 |
+ | + | + | | | | + | | | Table 6 | y, z, w) | | gent 5 | 24 | 83 | ** | 40 | မှ | ţ-= | 20 | 5 | | grade (Spinster) | \$1 man | 22 | Annual services and the are services and the services and the services and the services are services and the services and the services and the services are services and the services are services and the services and th | |----------------------
--|-------------------------------------|--|--|--|--|--
--|--|--|--|--
---|--|--| | | 0 | ya manta magi (Mazifi i i dependen) | erus han ering und debu sette | Mark Committee or the C | ag agalany carther of a fore. | grend . | HER, EAST STREET THE SQUEST | augi, jankig, silveland Pik yilvysig, sale a | prof | to pronound above . | grand | port. | no staničkom dobustkam se se se | and the second s | and the second s | | 1 | 0 | | | a valencing has valighed brinks | prod | Talky Mary Brown Williams | g mang ga ngganga ni ng galakawa pani | Billioners and the first street | #424; | The Application of the Control th | | | i yang marang maganat da saman maran sa s | | p | | (1, 0, 1, 1) | 0 | | | reproperations and the second | graph. | | Tables And Thomas and Tables | part | Amel. | Service | - Description Report Report Law and Administration | | ماندند المديد والعرب والمساود والم | desired | and processing the course of the course | | (1, 0, 0, 0) | C | wai | | | | *************************************** | | prod. | gover | AND ARROWS AND ARROWS HAVE | y d | | angsi ya kerenda da asara gali dagka W Walio. | a saad pikalikoo oo oo aa da kalka ka aa a | appear in m. minutes are no pe | | (0, 1, 1, 1) | 0 | | | Section (Control of the Control t | Among management | ground | 2 mm | THE REPORT OF THE PARTY | | Model | Janes, Albert St. St. St. St. St. St. St. St. St. St | garant. | | The second section of sec | i and | | (0, 1, 0, 0) | 0 | | | dealles confess, mer mer enner i | - Algorated acceptant accepts, in combined trans- | y-1-1 | -444 | a de describeration de la principal prin | Seedings (Seedings to september 648 personality) | ngganggagagan a makamat dipantan da sar | grow# | | ngois points and completely the | avidenteera apactumenteera b | washing the a | | (0, 0, 1, 0) | 0 | | pro- | | AND THE PROPERTY OF THE PARTY O | | 6 mm | AND THE PARTY AND ADDRESS. | | | gree ! | | Mar suprige that there again | elpaine en constant antient | Suppose of the suppos | | (0, 0, 0, 1) | | p.ung | | | AND THE PROPERTY OF THE PARTY O | georgenist in enterfere the Prince Colde | - Andrew Control of the t | general and an appropriate of the second and se | uprica kriugo nagria Ambirot | And the second section of the second | | , | glasen. | n stared to popymake ! | Section Section for the Court of o | | (0, 0, 0, 0) | 0 | | No. Test, infrascoile, decress-confedit from | Anger or Appearance and a | and the second second second second | 1. ann | | | | | T. M. C. P. P. C. P. C. P. C. P. P. P. C. P. | Edition of the second s | Windows and the second | to the standard first and to the fact bades. | | | CHEST AND CONTRACTOR | A STATE OF THE STA | of Trained Steamers | A Transfer Difference | | | 1 | | | | | | | | | | ## Let us construct expression $\Pi\Sigma$ $$\begin{cases} 5', 5', 8', 9', 10', 11' \\ 0, 1', 2', 4', 6', 7', 12', 13', 14' \\ 2 \begin{cases} 4', 14' \\ 0, 1', 2', 6', 7', 12', 13' \\ 3', 5', 9', 10' \\ 4 \begin{cases} 4' \\ 14' \end{cases} \begin{cases} 8' \\ 11' \end{cases} \begin{cases} 7', 13' \\ 0, 1', 2', 6', 12' \\ 3', 5', 10 \\ 13 \begin{cases} 2', 6' \\ 0, 1', 12' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 4 \end{cases} \begin{cases} 10' \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5' \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 10 \\ 3', 5', 11 \\ 3', 5', 14 \\ 1', 12', 7 \\ 3 \\ 11 \\ 3', 5', 8 \\ 11 \\ 7', 13', 7 \\ 14 \end{cases}$$ ## Let us construct expression HY $$\begin{array}{c} 14 \\ 8, 5, 8, 9, 10, 11 \\ 0, 1, 2, 4, 6, 7, 12, 18, 14 \end{array}$$ $$\begin{array}{c} 19 \\ 4, 14 \\ 0, 1, 2, 6, 7, 12, 13 \end{array}$$ $$\begin{array}{c} 6, 11 \\ 3, 5, 9, 10 \end{array}$$ $$\begin{array}{c} 11 \\ 4 \\ 14 \\ 11 \\ 0, 1, 2, 6, 12 \end{array}$$ $$\begin{array}{c} 9 \\ 0, 1, 12 \end{array}$$ $$\begin{array}{c} 10 \\ 0,
1, 12 \end{array}$$ $$\begin{array}{c} 2, 6 \\ 0, 1, 12 \end{array}$$ $$\begin{array}{c} 10 \\ 0, 1 \\ 1 \\ 4 \\ 7 \end{array}$$ $$\begin{array}{c} 7 \\ 1 \\ 4 \\ 7 \end{array}$$ $$\begin{array}{c} 7 \\ 7 \\ 7 \\ 19 \end{array}$$ As in the preceding case, we verify that to each test of one expression there corresponds a test of the other expression, and vice versa. ## 5. Single Tests As follows from the definition, the form of a test for verifying one and the same network \mathcal{O} , realizing a function $f(x_1, x_2, \dots, x_n)$, depends on the choice of the set \mathcal{N} . In other words, the form of the test depends on the fixation of the permissible faults, and also on the degree of detail to which it is necessary to carry out the analysis of the faults. From this point of view, it is possible to classify the tests. We shall not dwell in detail on this question. We shall note, however, a few types of tests. - 1. A single test for the detection of a faulty contact, when it is known beforehand that the fault (closing or opening of the contact) is possible for any contact, but also for one. - 2. Test of a relay for detecting faulty relays -- the permissible faults are a short circuit or an open circuit in the device that controls the connection of the power supply to the relay winding. In this case, as can be readily seen, the form of the test depends only on the function and is independent of the choice of the network that realizes the given function. 3. Complete test for the detection of faults in contacts, when the permissible faults are a shorting orran opening of any contact (possibly of several contacts simultaneously). It is obvious that any test for a contact network is contained in a certain complete test. It is important to note here that although the form of the test depends on the choice of the set \mathcal{D} , which in the final analysis depends on the structure of the network, in many cases one can start not from a specification of the set \mathcal{D} , but from a list of certain requirements which are independent of the form of the network. This, for example, is the situation for the foregoing types of tests. In those cases when the problem is formulated in terms which do not take into account the structure of the network, it becomes meaningful to raise the question of comparing tests corresponding to different networks. Let $t_{f}(x_1, x_{27}, ..., x_n)$ be the shortest: length of the test in the examination of all the network realizations of a function $f(x_1, x_2, ..., x_n)$. Let furthermore $t(n) = \max_{f} t_{f(x_1, x_2, ..., x_n)},$ where max is taken over all the functions of algebraic logic, which depend on n arguments. Then, naturally, the following problem arises. What is the asymptotic expression for the function t(n) for any type of test? It is clear here that $t(n) \leqslant 2^n$. For example, it is unknown whether $t(n) < 2^n$ in the case of complete tests. In other words, how sensible is the formulation of the problem concerning a minimal test (see note in connection with the definition of the complete test). Along with these questions, one must also raise several other questions concerning tests. - 1) How are tests changed when networks are transformed? - 2) Let \mathcal{M} be the set of different fault functions of the network $\mathcal N$ for a given type of test. What is the estimate of the cardinality of the set $\mathcal M$? (in this way we can obtain an estimate for t(n)). Let us proceed now to a more detailed examination of unit tests. We are concerned with unit tests because this case is in some sense the simplest. Whereas, for example, in the case of a complete test, even for simple networks with 5 or 6 contacts, large calculations are necessary to construct the tables of fault functions (if is the number of network contacts, 3 faults are possible). Since for any $\mathcal{E} > 0$ one can indicate such a N, that any function of n > N arguments can be realized with a network with a number of contacts not greater then $(1 + \mathcal{E}) 2^{n+2}/n$ [2], then for n > N $t(n) \leq (1+\epsilon) \frac{2^{n+3}}{n}.$ The latter follows from the fact that the length of the test does not exceed the number of all the fault functions. It follows from this result that when $$(1+\varepsilon)\frac{2^{n+2}}{n} < 2^n$$, τ , e. $n > 8(1+\varepsilon)$ the problem of finding the minimal test has a full meaning in that the length of the minimal test, roughly speaking, amounts to 8/n of 2^n -- the length of the trivial test. We have seen in Sec. 3 that a unit test breaks up into two independent (non-intersecting) tests: a test for a short and a test for an open circuit. Consequently, the problem of the construction of a single test breaks down into two independent problems. For further analysis it is useful to investigate the tests from the geometrical point of view. Let $f(x_1, x_2, \dots, x_n)$ be realized by the network $f(x_1, x_2, \dots, x_n)$ one can set in relative unique correspondence a certain subset $f(x_1, x_2, \dots, x_n)$ one can set of vertices of a unit n-dimensional cube; precisely, $f(x_1, x_2, \dots, x_n) = 1$. For example (Fig. 20) $$f(x_1, x_2, x_3) = x_1 + x_2 + x_3 \pmod{2},$$ $P = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)\}.$ Let us put $\mathfrak{M}=\mathfrak{M}_q+\mathfrak{M}_r,$ where \mathcal{M}_{q} is the set of fault functions in the case of a single closing, \mathcal{M}_{r} the set of fault functions in the case of a single opening. We denote by Q the set of "closings". i.e., the set of all those vertices of the n-dimensional cube, in each of which all the functions from \mathcal{M}_{q} do not assume one and the same value. Analogously, R is the set of points of "openings," i.e., the set of all those vertices of the n-dimensional cube, in each of which all the functions from \mathcal{M}_{q} do not assume one and the same value. Obviously we have $Q \subset C P$ (complement to P), $R \subset P$. We introduce on the set of the vertices of the unit n-dimensional cube the following metric (see $\frac{1}{n}$) $$\rho(\alpha, \beta) = |\alpha_1 - \beta_1| + |\alpha_2 - \beta_2| + \dots + |\alpha_n - \beta_n|.$$ Let M be a certain subset of the points of the vertices of the unit n-dimensional cube. We denote by S(M, 1) the set of points p of the unit n-dimensional cube, such that there is found a point m \in M, for which O(p, m) = 1. We consider the set $P \setminus S(P, 1)$. Those sets assemblies from Q, which enter into this set, are called false. False assemblies are due to the presence of false circuits in the network (compare with Sec. 1). We note that the set Q can coincide with CP and R can coincide with P. For this purpose it is necessary to realize $f(x_1, x_2, ..., x_n)$ by means of a $\overline{\Pi}$ network, corresponding to the conjuctive normal form and respectively to the disjunctive normal form. | 0 | T, | 1 x2 2 | ? | f no | 2 H | -1 ZK | | |--------|--
--|-------------------|--|--|---|----------------------| | | A CONTRACTOR OF THE PARTY TH | LOTTER AND A COMPANY CONTROL OF THE STREET O | T y | Ex.1 | 55 p - 1 | $\overline{\mathcal{X}}_{\mathcal{H}}$ $\overline{\mathcal{X}}_{k+1}$ | \bar{x}_{h+1} | | | | | $ar{x}_{4}$ | * | EK+1 | ž : | \bar{x}_{h+2} | | 2 | mananan dan dan dan dan dan dan dan dan d | The state of s | | | | TN+2 | Market States | | 11-k-1 | To the second | Z17-K+1 | | november for failer than the proper program of the contract | Z7-2 | | | | n-k | | En-H+1 | \bar{x}_{n-k+2} | gyda god agod ar ddiwy y cyfle a ddillo hallan y a'r a'r diwydd maeth | $\begin{bmatrix} \bar{x}_{n-2} \\ \bar{x}_{n-1} \end{bmatrix}$ | \mathcal{Z}_{n-1} | \bar{x}_n | | | <i>(-71-1</i> | n-n-e | antibupa. K | | ** * | | | Fig. 21 ### Chapter II ## Methods of Constructing Tests for ## Individual Classes of Metworks The investigations of Chapter I show that the general algorithm is too cumbersome even in the case of construction of minimal single tests. Apparently, the cumbersomeness of this algorithm is due to its universality (i.s., due to the circumstance that it is suitable for any function $f(x_1, x_2, ..., x_n) \in F_2$ and any network ℓl that realizes 1t). One could dispense with the requirement of minimality, replacing it with the requirement that the length of the test, for the network \mathcal{A} , realizing the function $f(x_1, x_2, \dots, x_n)$ have an order not exceeding the order t(n), i.e., the order of the greatest length of all the lengths of the minimal tests over all the functions of n arguments. We shall not touch upon this question. One can advance here the assumption that the general algorithms, as in the case of the synthesis of relay-contact networks, will give, for individual networks (although they are simpler than the common algorithm for the construction of the minimal test), greater deviations from the minimal test. Taking these considerations into account, one can indicate two paths in test theory: on the one hand, one can forgo an examination of all the functions and all the networks, and on the other hand one can modify the concept of a test, for example require that the error occur with a probability, say, greater than $1-\mathcal{E}$. In the present chapter we shall touch upon the first side of the matter. Here the problem of construction of tests is solved for individual classes of functions with allowance for the singularities of the synthesis of the networks. In these considerations, a decisive role is played not by the table of functions, but by the method of specifying the table takes into account certain contenful singularities of the structure of the functions. 6. Tests for Networks that Realize Elementary Symmetrical Functions In the study of symmetrical functions from P_2 , a fundamental role is played by the so called elementary symmetrical functions, i.e., functions of the form $$S_{k}(x_{1}, x_{2}, ..., x_{n}) = \bigvee x_{1}^{c_{1}} \& x_{2}^{c_{2}} \& ... \& x_{n}^{c_{N}},$$ $$c_{1} + c_{2} + ... + c_{n} = k,$$ where $x^{c} = \begin{cases} x & \text{for } c = 0, \\ x & \text{for } c = 1. \end{cases}$ The function S_n assumes a value of 1 for those and only those assemblies $(\propto_1, \propto_2, \ldots, \propto_n)$ in which 1 is encountered exactly k times. As is known /7/, the function $S_k(r_1, r_2, \dots, r_n)$ can be realized by a network $Y_{n,k}$ with k(n-k+1)+1 (n-k)(k+1) contacts (Fig. 21). For this class of networks, the question arises of the construction of a surficiently "good" single test for closing. This problem is of interest in connection with the fact that the construction of a single test reduces to the construction of a single test reduces to the construction of a single test for closing and a single test for opening. For this purpose, we establish the following proposition. Theorem. For the network $\gamma_{n,k}$, new(k, n - k) \geq 2 one can construct a single short— rest T of length t, where $$t < (n-k+1)(k-2) + (n-k) + \left[\frac{n-k+1}{2}\right] + 2 \ npu \ k \ge 3,$$ $$t < (k+1)(n-k-2) + k + \left[\frac{k+1}{2}\right] + 2 \ npu \ n-k \ge 3,$$ $$t = 7 \ npu \ n = 4, \ k = 2$$ $$t = 4 \ npu \ n = 3, \ k = 1,2$$ $$t = 2$$ $$t = 4 \ npu \ n = 3, \ k = 1,2$$ $$t = 2$$ For convenience, we renumber the contacts of the network $\chi_{n,k}$ in the following manner: we introduce a system of coordinates, as indicated in Fig. 21, and set in correspondence each "horizontal" (closing) contact the coordinates (i, j), of its left end (the first co-ordinate is reckoned along the horizontal axis, the second along the vertical one), and to each "vertical" (opening) contact we set in correspondence the coordinates (i, j), of its upper end. Obviously, for the coordinates (i, j), we have $0 \le i \le k-1$ and $0 \le j \le n-k$; for the coordinates (i, j), we have $0 \le i \le k$ and $0 \le j \le n-k-1$. We shall construct a test in the form $T = T_1 * T_2 * T_3 * T_4$. Simultaneously we shall verify that with the aid of T one can establish any single closing in the network $y_{n,k}$ and thereby prove that T is a test. We put $k \ge 2$. l) With the aid of the assemblies T_1 we determine that a) either a vertical contact is out of order, b) or else a horizontal contact is out of order or the circuit is in working order. Let the aggregate T_1 of the assemblies be defined in the following manner: On the assembly $$\overbrace{0\ldots 0}^{l-1} \ \overbrace{1\ldots 1}^{k+1} \ 0\ldots 0$$ the correct network $\gamma_{n,k}$ assumes the form shown in Fig. 22. Consequently, the network operates if and only if a single closing is contained in the vertical contacts of the 1-th horizontal strip. If for all the assemblies T_1 the network does not
conduct, then either the network is in working order or else there is a single fault in the horizontal contacts. We note that here in the case of a fault in the vertical contacts, we establish even the strip in which the faulty contact is located. 2) Let us assume that either a horizontal contact is faulty, or else the circuit is in working order. We shall show how to continue the analysis of the circuit in this case. Let us consider the set T₂, consisting of two assemblies Obviously, on these assemblies the network $\gamma_{n,k}$ assumes correspondingly the forms shown in Fig. 23. It is clear that in the case of assembly α the network conducts if and only if the horizontal contact of the 1-st column is Fig. 23 faulty. In the case of assembly by twhen a horizontal contact of the last (k-th) column is at fault. If with both assemblies the circuit does not confuct, we have a third possibility: either the network is in working order, or else the horizontal contact in the "middle" columns is faulty. (When k = 2, in this case, the circuit is in working order). a) Let us assume now that either the network is in working order, or else — a horizontal contact in a middle column (k > 2) is faulty. In this case we consider the set T_{γ} of assemblies $$k-2 \begin{cases} k-2 \\ 0 & 00101 & 111 \\ 0 & 001101 & 111 \\ 0 & 001111 & 101 \end{cases}$$ $$k-2 \begin{cases} 0 & 010111 & 110 \\ 0 & 010111 & 110 \\ 0 & 010111 & 110 \\ 0 & 011111 & 010 \end{cases}$$ $$k-2 \begin{cases} 101 & 110 & 0 \\ 110 & 110 & 0 \\ 111 & 010 & 0 \end{cases}$$ We take the i-th assembly in the j-th box $$\underbrace{0 \dots 0}^{n-k-j+1} \underbrace{1 \dots 1}_{i} \underbrace{0 \dots 1}_{i} \underbrace{0 \dots 1}_{i} \dots \underbrace{0 \dots 0}_{i}.$$ With this assembly, the network assumes the form shown in Fig. 24. Consequently, under the assumptions made $(k-2\geqslant i\geqslant 1)$ the network operates if and only if the horizontal contact $(i, n-k-j+1)_h$ is faulty. In the case when the network does not conduct on the assemblies from T_3 , it is in working order. b) A horizontal contact of the first (or respectively last) column is faulty. Let us consider the aggregate of assemblies for k > 3 This aggregate consists of the assemblies of the set T_2 and the first assemblies of each box of the set T_3 . If k=2, then we add to the set T_2 , for n=3, the assembly $\{0,1,0\}=T_3$, for n=4 we add the assemblies $\{0,0,1,0$ and $\{0,1,0,0\}=T_3$. Let $k\geq 3$. Then with the $\{j+1\}$ -th assembly $\{1\leq j\leq n-k+1\}$ the network has the form shown in Fig. 25. Let us write out the table of fault functions corresponding to respectively to the contacts $(0, 0)_h$, $(0, 1)_h$, ..., $(0, n - k)_h$, $(k - 1, 0)_h$, $(k - 1, 1)_h$, ..., $(k-1, n-k)_h$ with the indicated assemblies (Table 7). It is seen from Table 7 that with the considered assemblies the faults in the horizontal contacts of the first and last columns is completely localized. In the case k=2 it is easy to verify that it is also established which horizontal contact is faulty (under the condition that a horizontal contact is faulty). - 3) Assume now that it is known that one of the vertical contacts of the 1-th strip is faulty. - a) We put first $k \ge 3$. With the assemblies contained in (n k 1)-th box $(0 \le 1 \le n k 1)$, and the last assembly contained in the (n k 1)-th box, we make up a table of fault functions (Table 8), corresponding to the contacts $(1, 1)_{v}$, $(2, 1)_{v}$, ..., $(k-1, 1)_{v}$. It is clear therefore that when $k \ge 3$ the fault in the contacts $(1, 1)_{v}$, $(2, 1)_{v}$, ..., $(k-1, 1)_{v}$ (i.e., vertical contacts of the (1+1)-th strip excluding the extreme contacts) is established. In the case k = 2 for k = 3 we take the assembly (0, 1, 0) and the assemblies (0, 0, 1, 0) and (0, 1, 0, 0) for the case k = 4 (see 2, item "b"). With the aid of these assemblies presence of we detect the faults in all the vertical contacts, with the exception of contacts (0, i), and (k, i), If with the indicated assemblies the network does not conduct, we have case "b," i.e., the vertical contacts of the form $(0, i)_v$ and $(k, i)_v$ are faulty. Table 7 | garamentus senet senetiri digi pamanili se ori e meri unun ununun da i da Peter 1886 in da dan mendendi di Sala (Alla (A | (0,0) | 2(1'0) | gial (volver) farmer un neurole de la d | (On-4-1) | (J, n-h) | $(\kappa - (0)_2)$ | (k-11)2 | li a b | (1,4) | (4-1) | |--|---------|--------|---|----------|----------|--------------------|---------|--------|-------|-------| | 0000/11 | 1 | 1 | | 1 | 1 | 0 | 0 | | U | Ú | | 0 0 0 /1 0 1 1 | 1 | 1 | | 1 | 0 | 0 | 0 | | 0 | 0 | | 0 0 /0 | 7 | 1 | to go to | O | 0 | 0 | 0 | | 0 | 1 | | | # # # # | . 4 . | | * | | | 4 . | | | • • | | 0/101/00 | 1 | 0 | in a gr | 0 | Ü | 0 | . 0 | 4 4 4 | 1 | f | | 10 1 6 0 | O | 0 | | 0 | 0 | 0 | 1 | | 1 | 1 | | 1 11/0 0 | 0 | 0 | # & # | 0 | 0 | 1 | 1 | | 1 | 1 | We note that when n-k=1 the faults corresponding to the contacts $(0,0)_{v}$ and $(k,0)_{v}$ are indistinguishable, since to them corresponds one and the same fault function $$S_{n-1}(x_1, x_2, \ldots, x_r) \bigvee x_1 x_2 \ldots x_n$$ It therefore remains to consider the case when n-k Let us consider the (n-k+1)/2 assemblies (the set T_{k+1} Table 8 | | According to the control of cont | ngangai ng agaman and an at a | ا به مواسع بالدوية السامية برقاء المان بالرابعية - مجيد في برايا المواسعية . | | | | |--
--|---|--|--|----------------
--| | | | n(1,1) | (2,1)n | | $(k-2,l)_{ll}$ | (k | | - Comment | t n-h-l-1 | riguese – pas significante que entre des el Antonio - Vene | nd gift a wagen på negden unmed med til med til e til til | e ne victoria de victoria de victoria de constituir con | | | | operate selection of the th | 001011100 | 1 | 0 | and the state of t | 0 | (| | ASSESTED TO THE PROPERTY OF THE PERSON. | 0, 0 1101 1 0 0 | | Total de la constant | | 0 | (| | | , | | | | | | | Mary Comments of the | 0011110100 | Activities of the state | grand 3 | | . details. | | | ď | 00 111101 000 | () | 4 | and the desired provide the second seco | | Congress of the th | | | 78 H 1 | - Alberta de Carlos | Light contract of the | 1 | | | Here each succeding assembly is obtained from the preceding one by shifting the ones to the right by two columns, with the exception of perhaps the last one (for odd n - k), when the ones are shifted to the right by one column. With these assemblies, the network has the form shown in Fig. 26. It is seen therefore that in the case when the extreme vertical contacts of the first stripare faulty, then if the circuit conducts with the l-st assembly, then the contact (0, 0), is faulty, and if the circuit does not conduct the l-st assembly, then the contact (0, k), is faulty. If the extreme vertical contacts of the 2-nd strip are faulty, then if the network conducts the l-st assembly, then the contact (1, k) is faulty, and if the circuit does not conduct an the 1-st assembly, then the contact (1, 0) is faulty, etc. This completes the proof of the fact that $T = T_1$, T_2 , T_3 , T_4 (for n - k < 1 we have T_4 empty) is a test. Let us estimate the length t of the test T. For this purpose we recall that $$\begin{aligned} t_1 &= n - k, \\ t_2 &= 2, \\ t_3 &= \left\{ \begin{array}{ll} (n - k + 1) \, (k - 2), & k \geqslant 3, \\ 1, & k = 2, \, n = 3, \\ 2, & k = 2, \, n = 4, \end{array} \right. \\ t_4 \leqslant \left[\begin{array}{ll} n - k + 1 \\ 2 \end{array} \right] & (= \text{for } n - k > 1). \end{aligned}$$ Thus $(<(n-k+1)(k-2)+(n-k)+\left\lceil\frac{n-k+1}{2}\right\rceil+2 \text{ at } k\geqslant 3.$ (*) If $n-k\geqslant 3$, then by making a change of variables $x_1=\overline{y}_1, x_2=\overline{y}_2, \ldots, x_n=\overline{y}_n$, the function $S_k(x_1, x_2, \ldots, x_n)$ goes into the function $S_{n-k}(y_1, y_2, \ldots, y_n)$ and the network $\gamma_{n,k}$ goes into network $\gamma_{n,n-k}$. For the network $\gamma_{n,n-k}$, it is possible to construct, as above, a single closing test $T=\left\{(\alpha_1, \alpha_2, \ldots, \alpha_n)\right\}$ of length $t \leq (k+1)(n-k-2)+k+\left[\frac{k+1}{2}\right]+2$ npn $n-k \geqslant 3$. (**) It is obvious that $T^* = \left\{\left(\overrightarrow{\alpha}_1, \overrightarrow{\alpha}_2, \ldots, \overrightarrow{\alpha}_n\right) \text{ is a} \right\}$ single test for closing for the network $\gamma_{n,k}$, with $t^*=t$. If $k \ge 3$ and $n - k \ge 3$, we take that group of the tests for which the estimate ((**) or (**)) is lower. We denote by m the number of fault functions (equal to the number of contacts); we obtain $$m = k(n-k+1) + (n-k)(k+1) = 2k(n-k) + n.$$ We estimate the ratio of the length of the obtained test to the number of fault functions, i.e, to the length of the trivial test (see Chapter I, Sec. 5). We have $$\frac{1}{m} \le \frac{\frac{1}{2}m - n + \frac{3}{2}k + \frac{1}{2}}{m} \quad \text{if } k \ge 3,$$ $$\frac{1}{m} < \frac{\frac{1}{2}m + \frac{n}{2} - \frac{3}{2}k + \frac{1}{2}}{m} \quad \forall \quad n - k > 3.$$ Since the cases k = 1 or n - k = 1 are trivial, we shall assume that $k \ge 2$ and $n - k \ge 2$. The expression (-n + 3k/2 + 1/2)/m, where $k \le n - 2$, reaches a maximum when k = n - 2. In fact, in this case the numerator will have a maximum and the denominator a minimum. Analogously, the expression (n/2 - 3k/2 + 1/2)/m, where $k \ge 2$, reaches a test maximum k = 2. Thus $$\frac{-n+\frac{3}{2}k+\frac{1}{2}}{\frac{n}{m}}<0,1 \text{ and } \frac{\frac{n}{2}-\frac{3}{2}k+\frac{1}{2}}{\frac{n}{m}}<0,1.$$ Consequently, when min (k, n - k) > 1 we have t/m < 0.6 The preceding theorem gives a way of constructing a single closing test for elementary symmetrical functions $S_{n,k}$, realized by means of the networks $\gamma_{n,k}$. The natural question arises, however, of how "good" the constructed test is, i.e., in other words, how strongly the length of the constructed test differs from the length of the minimal test. Here we shall not give a complete answer to this question. For the case of symmetrical functions $S_{n,n-1}$ we shall propose a method of constructing a minimal test.* From this it is already easy to obtain a desired comparison and to conclude that the previously constructed tests are completely satisfactory. Theorem. For networks $\gamma_{n,n-1}$ the length to of a single minimal test for closing T_{\min} , is equal to $q_n - [q_n/3] \cdot 1$, where $q_n = 2(n-1)$ is the number of horizontal contacts of the network $\gamma_{n,n-1}$. Proof. We shall show first that $t_{\min} > q_n - (q_n/3) + 1$. We note first that the fault functions corresponding to the first and last vertical contacts are identically equal, i.e., $f_{00}^{\mathbf{v}} = f_{0k}^{\mathbf{v}}$ (see p. 313 for source7). It is further evident that to ^{*} We have in mind the networks \u03c7 n,n-1 establish faults in the extreme vertical contacts it is necessary to take the assembly α^{0} = (1, 1, ..., 1). This assembly makes it possible to distinguish the case when a vertical contact is out of order from the case when either a horizontal contact is out of order or the network is in working order. Thus, $T_{\min} \supset \alpha^{0}$. Let furthermore $T' \subset T_{\min}$, where T' is the test for faults in the horizontal contacts. By virtue of the preceding remark one can assume that $\alpha' \in T'$. We denote by t' the length of the minimal unit test for closing in the case when only the horizontal contacts can be faulty. We then have the following inequalities for the length t' of the test T': $$t_{\min} \geqslant t'+1 \geqslant t'_{\min}+1$$. For the network $\gamma_{n,n-1}$ (Fig. 27), the fault functions are tabulated in Table 9. Note. The assemblies \mathcal{A}^0 , $\mathcal{A}_j^1(j\leqslant i)$ and also the functions f_0 , f_{i0}^h , f_{j1}^h , and f_{k0}^v from the table for the network $\gamma_{n,n-1}$ are identical with the corresponding assemblies and functions from the table for the network $\gamma_{n',n'-1}$ for n'>n. The validity of this identification is connected with the fact that both tables are identical within the limits of the first n+1 boxes. Table 9 consists of n boyes, the construction of which, starting with the first, has quite definite regularity. We shall agree to denote the assemblies by X_j^i , where the superior index denotes the box to which the given assembly belongs and the inferior index denotes the number of the given assembly in the box, starting with the uppermost. Let us examine the part of Table 9, corresponding to the horizontal contacts. It is easy to see that this part of the table satisfies the following requirements: - Bach row contains exactly two ones; - 2) There are no identical rows or columns; - 3) There exists one one function f_0 , to which corresponds a column containing no ones. Let f_1 be an arbitrary fault function from the considered subtable, with $f_1 \not\equiv f_0$. It is obvious that one of the assemblies on which the function f_1 assumes a value 1, should enter in the test. We denote this by $x \not\in f_1$. By virtue of property 1, we find in the subtable a function that assumes a value of 1 with the assemble 1. Let us consider a set of all such assemblies, on which $f_1 = 1$ or $f_2 = 1$. Let $f_2 = 1$ be an element of that set which entire the test - such an element will always be found, since $f_2 \not\equiv f_1$, and by definition the test
contains an assembly which distinguishes the Table 9 | | I | ងន | se | m | bl | 1 e | 8 | | | Но | ris | on | tal | C | ont | ac | ts_ | | | | | 108
801 | | ~~~ | o si | |------------------|-------|----|----|---|----|------------|--|--|----------------------------|----------|-----------------|-----|------|--------|-----|------|------|--|-----|-----|-----|------------|-----------|-----------|--------------| | .Ne hao. | x_1 | x2 | 2 | 9 | X4 | x_5 | | 10 | / r
00 | /r
10 | / ₂₀ | 150 | | / r 01 | /11 | / 21 | / 51 | | 180 | / B | / B | / H 30 | / n
40 | | No. of boxes | | αņ | 1 | 1 | 1 | 1 | 1 | 1 | | | , | | | | | | | | | | | 1 | 1 | 1 | 1 | | 0 | | 7 ¹ | 0 | 0 | | 1 | 1 | 1 | | | 1 | | | | | 1 | | | | | | | | | | , | 1 | | α ² 1 | 0 | 1 | , | 0 | 1 | 1 | | | 1 | | | | | | 1 | 1 | | | | 1 | | | | | 2 | | α <u>2</u> | 1 | c | | 0 | 1 | 1 | | The state of s | | 1 | | | | |] | | | | | | | | | | | | a_1^3 | 0 | 1 | | 1 | 0 | 1 | | | 1 | | | | | | | 1 | | | | 1 | 1 | | | | | | α3
2 | 1 | - |) | 1 | 0 | 1 | | | - Transition of the second | 1 | | | | | | 1 | | | | | 1 | | | | . 8 | | 23 | 1 | 1 | | 0 | o | 1 | | - Carrier Constitution of the | account of the second | | 1 | | | | | 1 | | | | | | | | | | | 24
21 | 0 | | | 1 | 1 | 0 | | · · | 1 | | | | | | | | 1 | | • | 1 | 1 | 1 | | | • | | 342 | - | | 0 | 1 | 1 | 0 | | • | | 1 | | |
 | | | | 1 | | • | | 1 | 3 | | | | | 143 | 1 | | 1 | 0 | 1 | o | <u> </u> | - - | | | 1 | | | | | | 1 | | | | | 1 | | | | | 24
24 | 1 | | 1 | 1 | o | 0 | <u> </u> | | | | | 1 | | | | | 1 | | | | | | | | | functions f, and f, (it follows, incidentally, from the properties 1 and 2 that on any assembly different from $lpha_1$ and contained in this set, the functions f, and f are distinguishable, i.e., they asoume opposite values). It follows from property 1 that there exists a function $\mathbf{f}_{\mathbf{k}}$ such that it assumes the value 1 on the assembly $\mathbf{x}_2.$ Consequently, on the assemblies $arphi_1$ and $arphi_2$ the functions f_{γ} , f_{2} , and f_{3} are completely distinguishable (Fig. 28), and the corresponding faults are detected. It is obvious that these assemblies do not break down in any manner the remaining set of functions of the investigated part of the table. We cross out from the table the columns corresponding to the functions f_1 , f_2 , and f_3 as well as the rows corresponding to the assemblies \bowtie_{γ} and $\varpropto_{>^{\circ}}$ In the remaining table there can appear identical rows, and in the successive steps also rows which do not contain ones. Let us perform the following operations on the table: 4)- - 1) We leave only one representative for each of the identical rows; - 2) We cross out entirely the rows which do not contain ones. We then obtain a table which need no longer satisfy requirement 1, for it may contain rows which contain a single one each. Let us take arbitrarily the function f, from the table. One of the assemblies, with which it assumes the value of 1, should enter into the test. With this, two cases are possible. - a) There exists only one assembly with which the function is equal to 1, and the row corresponding to this assembly contains only one 1. Such an assembly must enter in the test; on it only one function is defined. - b) There exist rows (or a row) corresponding to assemblies, with which the investigated function is equal to 1, and containing two ones. Using arguments, similar to those made for regarding for the function for which are distinguishable completely with the two assemblies, or else, if this can be done, we define two functions that are distinguishable with the two assemblies. (There are no other possibilities, for in none of the steps can identical columns occur). From this we see that violation of condition 1 can lead only to an increase in the test compared with the ideal case, when for each step condition 1 is satisfied. Since the initial part of the table (for the horizontal contacts) contains $q_n = 2(n-1)$ functions, we obtain the following estimate $$\ell_{\min}' \geqslant \left[\frac{q_n}{3}\right] \cdot 2 + q_n - \left[\frac{q_n}{3}\right] 3 = q_n - \left[\frac{q_n}{3}\right].$$ The presence of the term $q_n - q_n/3$ 3 is due to the need for distinguishing between the remaining $q_n - \left[q_n/3\right] 3$ functions and f. For this purpose it is necessary to have $q_n - \left[q_n/3\right] \cdot 3$ assemblies. This proves that $t_{\min} > q_n - \left[q_n/3\right] \cdot 1$. It now remains to show that $t_{\min} \leq q_n - \left(q_n/3\right) + 1$. For this purpose we construct a test of length $q_n - \left(q_n/3\right) + 1$. The construction and the proof will be carried out by induction with respect to n. To facilitate further considerations we formulate the property of the test T_n (see Table 9) in the following manner. 1. $$\alpha^0 = (1, \ldots, 1), \alpha_1^1 = (001 \ldots 1) \in T_n$$ - 2. From each box ℓ (starting with the second), To contains at least one assembly $\propto \frac{\ell}{i\ell}$, where $i_{\ell} < \ell$. - 3. a) If $q_n = 3k$, then the test T_n contains the assemblies $\propto \frac{n}{n-1}$ and $\propto \frac{n}{n}$, and withese assemblies the functions $f_{n-2,0}^h$, $f_{n-1,0}^h$, and $f_{n-1,1}^h$ are distinguishable. - b) If $q_n=3k+1$, then $\alpha \stackrel{n}{n} \in T_n$ and only the function f_{n-1}^h , is determined with the assembly α_n^n (the other functions are determined—the remaining assemblies). - c) If $q_n = 3k + 2$, then the test T_n contains the assemblies a_{n-2} , a_{n-1} , and a_n , and a_n the assemblies α_{n-1}^n and α_n^n one determines only the functions $f_{n-2,0}^h$ and $f_{n-1,0}^h$. The first step in the induction if for n=3 ($q_3=3+1$). From Table 9 it is easy to establish that the set $$T_3 = \{ \boldsymbol{\alpha}^0, \ \boldsymbol{\alpha}_1^1, \ \boldsymbol{\alpha}_1^0, \ \boldsymbol{\alpha}_2^2 \}$$ is a test. It is easy to verify that \mathbb{T}_3 has properties 1, 2, and 3b). Assume that the tests T_3 , ..., T_{n-1} ($n \ge 3$) with properties 1--3 inclusive have already been constructed; we shall show how to construct the test T_n . According to the different residues obtained by dividing a_{n-1} by 3, we consider three cases.* a) $$q_{n-1} = 3k$$. We put $$T_n = T_{n-1} - \alpha_{n-1}^{n-1} + \alpha_{n-2}^n + \alpha_{n-1}^n + \alpha_n^n$$ From this we see that T_n differs from T_{n-1} by the assemblies from boxes n-1 and n. We consider part of Table 9 corresponding to these boxes (Table 9a). ^{*} When estimating the lower bound (see p. 318 of source?) we have seen that the consideration depends on the residue obtained by dividing \mathbf{q}_n by 3. Table 9a | And the second s | * * | In - 8,0 | $f_n^r = 2, 0$ | $I_{n-1,0}^{\Gamma}$ | | /n - 5, e | $f_n^r = 2, 1$ | $f_n^{\Gamma} = 1, 1$ |
--|-------|--|--|--|--------
---|----------------|-----------------------| | 4 2 6 | | | • • | | | | | | | a n - 3 | | The state of s | • | | * * | | 1 | | | E Fi see I | 3 8 7 | | 1 | angger over frivansk gentral SA, Priza, av Village | ** 6 3 | | 1 | | | g exemple and a second contract of the | 4 . | The second secon | de e ti | e de se | T 4 | A The Control of | a a | • • | | an
n 2 | di la | Acres | The control of co | | , | | | 1 | | an 1 | * * * | | 1 | | | | ·. | 1 | | a n | × • • | | The second section of the second | The state of s | | | | 1 | that T_{n-1} , being a test for the network $\mathcal{X}_{n-1,n-2}$, distinguishes completely the functions f_{00}^h , ..., $f_{n-2,0}^h$ and f_{01}^h , ..., $f_{n-1,1}^h$, considered as fault functions for the network $\mathcal{X}_{n,n-1}$, and by the induction assumption, the functions $f_{n-3,0}^h$, $f_{n-2,0}^h$ and $f_{n-2,1}^h$ are completely determined with the assemblies x_{n-2}^{n-1} and x_{n-1}^{n-1} . It is obvious that with the assemblies x_{n-2}^{n-1} , x_{n-2}^n , x_{n-1}^n , and x_{n-1}^n (see Table 9a) determine completely the functions $f_{n-3,0}^h$, $f_{n-2,0}^h$, $f_{n-1,0}^h$, $f_{n-2,1}^h$ and $f_{n-1,1}^h$. It is clear that T has properties 1 and 2. In fact, property 1 is satisfied in a trivial manner. Since T_{n-1} on the boxes $\ell < n-1$, whereas for T_{n-1} property 2 is satisfied, then T_n has property 2. It is seen the set Tn, which satisfies from Table 9 that requirements 1 and 2, the faults in the vertical contacts completely localized. Finally, if we have win T identically 0, then the network is in working order. We have proved thus that T_n is a test. Since $q_n = 3k + 2$, it is necessary to establish that T, also has property 3c. It follows from Table 9a that the functions $f_{n-3.0}^h$, $f_{n-2,1}^h$, and $f_{n-1,0}^h$ are determined. The assemblies $\propto \frac{n-1}{n-2}$ and $\propto \frac{n}{n-2}$, while the functions $f_{n-2,0}^h$ and $f_{n-1,0}^h$ are determined with the assemblies $\propto \frac{n}{n-1}$ and $\propto \frac{n}{n}$. The remaining functions are not distinguishable with these assemblies. Thus, 3c does take place. b) $q_{n-1} = 3k + 1$. In this case we assume $T_n = T_{n-1} - \alpha_{n-1}^{n-1} + \alpha_{n-1}^n + \alpha_n^n$. Here, too, T_n differs from T_{n-1} in the assemblies from boxes n-1 and n. Using the fact that T_{n-1} is a test for $Y_{n-1,n-2}$ with properties 1-3b, and also wing the fulfillment of properties 1 and 2 for T_n , we shall prove, analogously as in the item "a," that In is a test for the network $\chi_{n,n-1}$. Since $q_n = 3k + 3 = 3(k + 1)$, it is necessary to verify the fulfillment of item 3a. From the definition of T_{n-1} if follows that $T_{n-1} = \chi_{n-1}^{n-1}$ determines all the functions (corresponding to the network $\chi_{n-2,n-1}$), the only possible exception being $f_{n-2,0}^h$. It is easy to see, however, that will the assemblies χ_{n-1}^n and χ_n^n the functions $f_{n-2,0}^h$, $f_{n-1,0}^h$, and $f_{n-1,1}^h$ are completely distinguishable. All the remaining functions coincide with these assemblies. This proves the fulfillment of item 3a. c) $$q_{n-1} = 3k + 2$$. We put $$T_n = T_{n-1} - \alpha_{n-2}^{n-1} - \alpha_{n-1}^{n-1} + \alpha_{n-3}^n + \alpha_{n-1}^n + \alpha_n^n.$$ Obviously, T_n has property 1. Since T_n corresponds with T_{n-1} on the boxes ℓ < n-1, and since T_n fulfills requirement 2, then, considering that A_{n-3}^{n-1} and A_{n-2}^{n} (T_n) we conclude that T_n has property 2. Using the fact that T_{n-1} is a test for $V_{n-1,n-2}$ and that T_n has properties T_n and 2, let us prove, as in item "a," that T_n is a test for the network $V_{n,n-1}$. Since $T_n = 3k \cdot 4 = 3(k \cdot 1) \cdot 1$, it remains to verify the fulfillment of item $T_n = 3k \cdot 4 3k$ and the functions $f_{n-3,0}^h$ and $f_{n-2,0}^h$ are distinguished with the assemblies α_{n-2}^{n-1} and α_{n-1}^{n-1} . It is clear that the functions $f_{n-2,0}^h$, $f_{n-2,0}^h$, and $f_{n-1,1}^h$ are fully determined with the assemblies α_{n-2}^n and α_{n-1}^n , which are added to f_{n-1}^h in place of the assemblies α_{n-2}^n and α_{n-1}^n . Finally, the function $f_{n-1,0}^h$ is determined with the assembly α_n^n . Thus, item 3b is satisfied for T_n . It now remains to verify that T_n has a length $t_n=q_n-\left[q_n/3\right]+1$. In fact, $t_3=4=4-\left[4/3\right]+1=$ = $q_3-q_3/3+1$. Let us put $t_{n-1}=q_{n-1}-q_{n-1}/3+1$. We shall show that $t_n=q_n-\left[q_n/3\right]+1$. For this purpose we consider three cases: a) $$q_{n-1} = 3k$$, $t_n = t_{n-1} + 2 = q_{n-1} - \left[\frac{q_{n-1}}{3}\right] + 1 + 2 = q_{n-1} + 2 - \left[\frac{q_{n-1} + 2}{3}\right] + 1 + 1 = q_n - \left[\frac{q_n}{3}\right] + 1$; $$b \ q_{n-1} = 3k+1,$$ $$t_n = t_{n-1} + 1 = q_{n-1} - \left[\frac{q_{n-1}}{3}\right] + 1 + 1 = q_{n-1} + 2 - \left[\frac{q_{n-1} + 2}{3}\right] + 1 + 1 = q_n - \left[\frac{q_n}{3}\right] + 1;$$ $$d \ q_{n-1} = 3k+2,$$ $$t_{n} = t_{n-1} + 1 = q_{n-1} - \left[\frac{q_{n-1}}{3}\right] + 1 + 1 = q_{n-1} + 2 - \left[\frac{q_{n-1} + 2}{3}\right] + 1 + 1 = q_{n} - \left[\frac{q_{n}}{3}\right] + 1.$$ This completes the proof of the theorem. It is necessary to indicate here that the theorem not only establishes the existence of tests with different properties, but also gives a very effective method of their construction, which does not require the scanning of all the subsets of the sets of n-term assemblies. ## Test for a Network that Realizes a Lihear The function $\Phi(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n)$ of algebraic logic is called linear, * if the following representation takes place $$\Phi(x_1, x_2, \ldots, x_n) = A_0 + A_1 c_1 + \ldots + A_n r_n \pmod{2}.$$ Knowing the network realization of the function $$\Phi_0(x_1, x_2, \ldots, x_n) = n + 1 + x_1 + x_2 + \ldots + x_n \pmod{2},$$ it is easy to obtain a network realization of any linear function, which depends on more than n arguments. It is known [7] that $\Phi_0(x_1, x_2, ..., x_n)$ can be realized by means of the network \mathcal{N}_{n} (Fig. 29). We see that this network is made up of blocks of the form shown in Fig. 30. In the present section we shall give a method of test for the network Q_{μ} . We shall constructing prove here the following statement. ^{*} For a linear function one encounters also in the literature the term the "parity counter." Theorem. For a network \mathcal{O}_n , realizing a linear function $\overline{\Phi}_0(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$, it is possible to construct a single test \mathbf{T}_n of length $\mathbf{t}_n \leqslant 3n-2$. We note that the closing of contact 1 and the closing of contact 2 of the 1-th block (i > 3) gives one and the same fault function. In fact, when contact 1 is closed, then there is a circuit 3--1-4 connected in parallel with contact 2, and this circuit has an admittance \overline{x}_i , i.e., it produces the same effect as if contact 2 were also closed, and vice versa. It is established analogously that closing of contact 3 and the closing of contact 4 corresponds to one and the same fault function. Furthermore, the differences in all the remaining fault functions will follow from the fact, which is about to be established, that all the indicated faults are localized. We prove the theorem by induction with respect to n. In the particular case n = 2, the set $T_2 = \{(00), (01), (10), (11)\}$ is at test (trivial; see introduction). In this case the following faults cannot be distinguished: opening of contact x_1 and opening of contact x_2 ... x_1 and x_2 and x_3 and x_4 ... x_4 closing of contact x_4 and closing of contact x_4 and x_5 ... x_6 and x_7 ... x_8 Let n = 3 (first step of the induction). It is seen from Table 10 of the fault functions of network
\mathcal{M}_3 that $T_3 = \{(001), (011), (101), (111), (000), (010), (100)\}$ is a test that distinguishes all the faults contained in the table. We introduce the notation $\delta' = ((\delta, 1))$, where $\delta = (\delta_1, \delta_2, \ldots, \delta_n)$, i.e., $\delta' = (\delta_1, \delta_2, \ldots, \delta_n, 1)$. If Δ is the set of assemblies δ , then $\Delta' = ((\Delta, 1))$ is the set of assemblies $\delta' = ((\Delta, 1))$. We put for n = even $$\begin{cases} \alpha_{n} = (0, 0, 0, \dots, 0), \\ \beta_{n} = (1, 1, 0, \dots, 0), \\ \gamma_{n} = (0, 1, 0, \dots, 0); \end{cases}$$ for n = odd $$\begin{cases} \alpha_{n} = (0, 1, 0, \dots, 0), \\ \beta_{n} = (1, 0, 0, \dots, 0), \\ \gamma_{n} = (0, 0, \dots, 0), \\ \gamma_{n} = (0, 0, \dots, 0). \end{cases}$$ Table 10 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | rt.S | Short | | | : | : | | Break | | | | | |---|---|---|--|----------|-----------------|-------------|-----|--|--------------------------------|-----|-----------------------|-----------------| | | | b1. | 3rd | 3rd bl. | 1st bl. 2nd bl. | b1. | 2nd | bl. | t . | 3rd | 3rd bl. | , | | | $\begin{vmatrix} x_1 & x_2 \end{vmatrix}$ | Ţ, | 3) | 67 | 1.7 | $\hat{x_1}$ | ائ | -51 | - | =7 | :- | - | | | | garage angung gerane begin | proved | | | | | | | : | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | ; | | | | (010) 1 (100) 1 (100) | | | de la lace de la control | - | | | | | | | | , | | 10) | | | | | | | | | | | | and and and and | | 1 (0) | | | | | | = | | The state of s | | | ALL MINISTERS A | | | 1 (00) | | | | | | = | - | | | | Company of the second | | | | | | | | = | 1 | | | | | | = - | | | | , sharehad a shirkatha stadi | | | - | | | want content | ark
We
I maken maken i f | | ANAMOR AND THE | | Fig. 31 Fig. 32 Second Step of Induction. Let there be constructed tests T_k for the networks n_k , where k < n, and let the length of the test T_k be $t_k < 3k-2$. We define $T_n := \{((T_{n-1}, 1)), z_n, \beta_n, \gamma_n\}.$ It is clear that $t_k \leq 3(n-1)-2*3=3n-2$. Let us prove that T_n is a test. We note that from the definition of T_n it follows that the test contains the assemblies $\mathcal{E}_1=(0,\,1,\,1,\,\ldots,\,1)$ and $\mathcal{E}_2=(1,\,0,\,1,\,\ldots,\,1)$. We first indicate how to detect the fault in the n-th block (if such exists). Since the network a_{ω} assumes with the assemblies \mathcal{E}_{ν} and \mathcal{E}_{ν} the form shown respectively in the left and the right parts of Fig. 31, we have for $\Phi_0(\mathcal{E}_1) \neq \Phi_0(\mathcal{E}_2)$ a short circuit in the 1-st or in the 2-nd block. Therefore in the 1-st and 2-nd blocks there is no short circuit if $\Phi_0(\mathcal{E}_1)$ = $= \Phi_0(\mathcal{E}_2)$. In the case when there is no short circuit in the 1-st and 2-nd blocks, a further investigation is necessary. Let us consider further the assemblies $\gamma_{n-1} = (0, \eta, 0, ..., 0, 1)$ and $\gamma_n = (0, \overline{\eta}, 0, ..., 0)$. appearance of the network It is obvious that the The noth these assemblies depends on the evenness of his When n is even it has the form shown in Fig. 32, and when n is odd it has the form shown in Fig. 33. Analyzing these cases we reach the conclusion that one of the contacts 1 or 2 (in the n-th block) is shortcicuited if $\overline{\Phi}_0(\gamma_{n-1}) = 0$ and $\overline{\Phi}_0(\gamma_n) = 1$, and that one of the contacts 3 or 4 is shortcircuited if $\Phi_0(\gamma_{n-1}) = 1$ and $\Phi_0(\gamma_n) = 0$. If, however, $\Phi_0(\gamma_{n-1}) = \Phi(\gamma_n)$, then there is no closing in the n-th block. It now remains to provide a prescription for detecting open circuits in the n-th block. For this purpose we examine the network \mathcal{O}_n on the assemblies \mathcal{O}_n , \mathcal{O}_n , \mathcal{O}_n , \mathcal{O}_n , \mathcal{O}_{n-1} , \mathcal{O}_{n-1} (Fig. 34). Since the networks "a" and "c" coincide only in the link x_i , then when $\Phi_0(\alpha_n) + \Phi_0(\alpha_{n-1})$, the contact x_1 cannot be open; analogously, from the fact that the networks "b" and "d" coincide only on the link x_{\uparrow} , we conclude that when $\overline{\Phi}_{0}(\beta_{n}) \neq \overline{\Phi}_{0}(\beta_{n-1})$ the contact x_{1} cannot be open. Next, comparing networks "a" and "d" with "b" and "c" respectively, we see that the foregoing networks coincide pairwise in all blocks, with the exception of the 1-st and the n-th. From this we reach the conclusion that when $\Phi_0(\alpha_n) \neq \Phi_0(\beta_{n-1})$ or respectively $\Phi_0(\beta_n) \neq \Phi_0(\alpha_{n-1})$, there is an open circuit in the 1-st or in the n-th block. Since we have just prescription for establishing an provided a open circuit in the first block, the open circuit in the n-th block is detected; with this, if $\Phi_0(\alpha_n) = 0$, then contact 3 is open, if $\Phi_0(\beta_n) = 0$ then contact 4 is open, if $\Phi_0(\alpha_{n-1}) = 0$, then contact 2 is open, and if $\Phi_0(\beta_{n-1}) = 0$, then contact l is open. This completes the analysis of the n-th If the n-th block is in working order, we put $x_n = 1$ and the network \mathcal{O}_n goes into \mathcal{O}_{n-1} . With this, there is a mutually unique correspondence between the assemblies from $((T_{n-1}, 1))$ and the assemblies from Tn-l. Since, by the induction assumption, Tn-l is a test for n-1, we can monitor the network n-1 completely, i.e., we can monitor all blocks from 1 to n-1 inclusive. If it is found that the subnetwork \mathcal{N}_{n-1} is in working order, this means that the entire network \mathcal{N}_n is in working order. This proves the theorem completely. In conclusion, we get tests for n = 4 and n = 5: $T_4 = \{(0011), (0111), (1011), (1111),
(0001), (0101), (1001), (0000), (0100), (1100)\},$ $T_{\rm g} = \{(00141), (01111), (10111), (11111), (00011), (01011), (10011), (00001), (01000), (10000)\},$ It is easy to verify that the algorithm proposed above for the construction of tests of the network \mathcal{O}_n , gives for n=3, 4, and 5 minimal tests. # 8. Test for the Comparison Network Of particular interest is the comparison network, i.e., a network which realizes the function $$f(A, B) = \begin{cases} 1 & \text{for } A \leq B, \\ 0 & \text{for } A > B. \end{cases}$$ Thus, let A = ana n-1 · · · al and B = b b n n-1 · · · bl be two m-co lumin binary numbers, and then $$f^{n}(a_{n},\ldots,a_{1};b_{n},\ldots,b_{1}) = \bar{a}_{n}b_{n} \vee (\bar{a}_{n}\bar{b}_{n} \vee a_{n}b_{n}) f^{n-1}(a_{n-1},\ldots,a_{1};b_{n-1},\ldots,b_{1}) =$$ $$= \bar{a}_{n}b_{n} \vee (\bar{a}_{n}\bar{b}_{n} \vee b_{n}) f^{n-1}(a_{n-1},\ldots,a_{1};b_{n-1},\ldots,b_{1}).$$ This function can be realized by the network shown in Fig. 35.* Thus, the comparison network \mathcal{O}_n consists of the (n-1)-th block of the form shown in Fig. 36, and one block shown in Fig. 37. With this, the blocks are joined in the manner as shown in Fig. 38. The network given contains 4n-2 contacts. The next problem is the construction of a minimal single test for the comparison network. Here we become acquainted with another use of the block structure of the network for the construction of a test. The method proposed consists of constructing the test for the entire network of tests for individual blocks. Thus, the block nature of the network is used in an entirely different manner than was done in Sec. 7, where the block structure was taken into account essentially in the law of construction of the test, and also in the inductive proof. However, such a law of construction of the test was to a considerable extent, so to speak, "guessed at", more accurately, so to speak, "noted"; here, to be sure in embryonic form, we propose a principle of constructing tests for block networks. Theorem. The minimal single test T_n for a comparison network O_n has a length $t_n = 2n + 4(n > 2).**$ Proof. We make up tables of functions of faults of the 1-st block (Table 11), and also of the i-th block (1 \leq i \leq n) (Table 12), considered as a multi-terminal network with one input and two outputs. For the i-th block, the values of the functions are written in decimal system, starting with dual notation sc_i-1. ** Obviously, $t_1 = 3$, $t_2 = 7$. The i-th block is connected in the network in the manner shown in Fig. 39. From this we have the following: - a) If $c_{i-1}=0$, for example, $a_i=1$, $b_i=0$, then all the circuits passing through subnetwork \mathcal{L} , are open, and therefore the operation of the subnetwork \mathcal{L} cannot be verified with such assemblies. - b) If s = 1 (in the i-th block), then $a_i = 0$, $b_i = 1$, the subnetwork \mathcal{L} is blocked, and therefore under our conditions the operation of subnetwork \mathcal{L} also cannot be verified. - c) No matter what the state of subnetwork \mathcal{L} , we cannot distinguish between the two states of the remaining part of the network, namely when s=1, $c_{i-1}=0$, s=1, $c_{i-1}=1$ (i.e., we do not distinguish between the ^{*} The network given here is simpler than that constructed in reference /3/ by G. N. Povarov by the cascade method. Fig. 39 values of the functions 2 and 3). The remaining combinations of the states scient are pairwise distinguishable. Therefore a table of fault functions for the i-th block connected in the network can be written in the form of Table 13. Table 11 shows that the minimal test for the first block consists of three assemblies (0, 0), (1, 0), and (1, 1); from Tables 12 and 13 we obtain one and the same minimal test for the i-th block (i > 1), consisting of all four possible assemblies. One must note here, however, that in the construction of a test for the i-th block (i > 1), we begin from the fact that on the assemblies (0, 0) and (1, 1) we used essentially information on the outputs s and c,, whereas in the verification of the i-th block, connected in the general network, we obtain information only from the output s. By virtue of this circumstance, we need for the verification of the i-th block not 4 assemblies, but more -- 6 assemblies (since 3 differs from 0, and also 4' differs from 0, only on the assembly (0, 0); 4 differs O and also 2' differs from O, only on the assembly (1, 1); then the assemblies (0, 0), (1, 1) must be taken both in the closed state and in the open state of the subset L). For convenience we shall write Table 11 | $(\sigma_1 b_1)$ | () | 1 | 2 | 1' | 2′ | |------------------|----|--|---|----|---| | (f), (%) | 1 | | | Ó | | | (0, 1) | 1 | | | | Trademan and Proceedings of the Control Phila | | (1, 0) | () | 1 | 1 | | | | (1. 1) | | and the second s | | | 0 | $f_1 = f_2$ Table 12 | 1 | (a, b_i) | 0 | 1 | 4.1 | 8 | 4 | 1' | 2' | S' | an none to annual to | |--------------------------|------------|----|---|--|---|--|----|----|----|----------------------| | | 111. Oy | 1 | | | 3 | | 0 | | | () | | The second second second | (0, 1) | 8 | | and the second s | | ann an Amhaid amh a d Sannaga a ta ainme | 1 | 2 | 1 | | | | (1, 0) | () | 1 | 1 | | | | | | | | | (1, 1) | 1 | 3 | and the second s | | 3 | | 0 | | | Table 13 | (a_i, b_i) | 0 | 1 | 2 | 3 | 4 | 1′ | 2' | 3′ | 4 | |--------------|---|------
--|-------------------|---|----|----|----|---| | (O, O) | 1 | | | 2 | | 0 | | | 0 | | (0, 1) | 2 | | | P Anna Anna Maria | | J | | 1 | | | (1, 0) | 0 | Page | 1 | | | | | | - | | (1, 1) | 1 | 2 | and the second s | | 2 | | 0 | | | the assemblies (α_n , ..., α_1 ; β_n , ..., β_1) in the form $\begin{pmatrix} \alpha_n, \dots, \alpha_n \\ \beta_n, \dots, \beta_n \end{pmatrix}$. From items a) and b) it follows that with the aid of the assemblies (dm, ...dill dill) ione cannot monitor blocks i - 1, i - 2, ..., 1. Since for each i (i > 1) there is at least one assembly with $\alpha_1 = 1$ and $\beta_1 = 0$, and at least one assembly with $\alpha_i = 0$ and $\beta_i = 1$, then the minimal test T must include the assemblies $$\alpha' = \begin{pmatrix} \alpha'_{i_1}, \dots, \alpha'_{i+1}, 1, \dots \\ \alpha'_{i_1}, \dots, \alpha'_{i+1}, 0, \dots \end{pmatrix}, \quad \beta' = \begin{pmatrix} \beta'_{i_1}, \dots, \beta'_{i+1}, 0, \dots \\ \beta'_{i_1}, \dots, \beta'_{i+1}, 1, \dots \end{pmatrix}.$$ From the foregoing arguments and from item c" that to monitor the second block it is necessary that there be present assemblies with $\alpha_2 = \beta_2 = 0$, and $\alpha_2 = (\beta_2 = 1, \text{ both with } (\alpha_1, \alpha_1) = (1, 0) \text{ and with}$ $(\propto_1,~\beta_1)~\neq~(1,~0)$. Therefore the test $T_{\rm n}$ must contain the assemblies $$\gamma' = \begin{pmatrix} \gamma'_{n}, \dots, \gamma'_{3}, 0, 1 \\ \gamma'_{n}, \dots, \gamma'_{3}, 0, 1 \end{pmatrix}, \quad \gamma'' = \begin{pmatrix} \gamma''_{n}, \dots, \gamma''_{3}, 1, 4 \\ \gamma''_{n}, \dots, \gamma''_{5}, 1, 0 \end{pmatrix}, \\ \delta' = \begin{pmatrix} \delta'_{n}, \dots, \delta'_{3}, 0, \alpha'^{0}_{1} \\ \delta'_{n}, \dots, \delta'_{3}, 0, \beta'^{0}_{1} \end{pmatrix}, \quad \delta'' = \begin{pmatrix} \delta''_{n}, \dots, \delta''_{3}, 1, \alpha'_{1} \\ \delta''_{n}, \dots, \delta''_{3}, 1, \beta'_{1} \end{pmatrix}.$$ where $$(\alpha_1^0, \beta_1^0) \neq (1, 0) \text{ in } (\alpha_1^1, \beta_1^1) \neq (1, 0).$$ Let us consider in greater detail the 1-st and 2-nd blocks of the network (Fig. 40). It is obvious that from among the foregoing assemblies only assemblies &' and &" can participate in the analysis of opening of contacts 2 and 4 of the 2-nd block and contacts 1 and 2 of the that the network 1-st block. Since the case conducts both with assembly δ and with assembly δ " is possible with the network in working condition, one can recognize with the two assemblies δ^* and δ^* at the most three faults (the fact that there are no coinciding fault functions for open circuits, follows from what will be given below). Thus, the test T should contain at least one more assembly ${\mathcal E}$, different from those previously constructed. In the analysis of open circuits in the test, as we have seen, there should be present assemblies of the form $\chi^i, \, \chi^u$ and x^i (i \geqslant 2). Of these, only four are in the control of the first three blocks We shall show that for any choic of values for γ_3 , δ_3 , and δ_3^2 we cannot completely distinguish all the short-circuit faults for the 2-nd and the 3-rd blocks. Eight cases are possible here. From item c it follows that when $\chi_3^* = \chi_3^* = \chi_3^2$ the foregoing assemblies do not make it possible to monitor completely the third block. Thus, it remains to consider only those cases, when at least one of the number χ_3^* , χ_3^* , χ_3^* , χ_3^2 is equal to 0 and at least one is equal to 1. If $\alpha_3^2 \neq \gamma_3^2 = \gamma_3^n$, then with the foregoing assemblies, when $\alpha_3^2 = 0$, we cannot distinguish short circuits of the 2-nd contact of the 2-nd block and the 3-rd contact of the 3-rd block, and when $\alpha_3^2 = 1$ we cannot distinguish open circuits of the 2-nd contact of the 2-nd block and the 4-th contact of the 3-rd block. It remains to analyze the case when $\gamma_3^2 \neq \gamma_3^2$. Let γ_3^p denote that value of γ_3^2 , or γ_3^n , which is different from α_3^2 . It is clear that with the assembly $$\gamma := \begin{pmatrix} \gamma_n^p, \dots, \gamma_n^p, \gamma_n^p, 1 \\ \gamma_n^p, \dots, \gamma_n^p, \gamma_n^p, 0 \end{pmatrix}$$ the following pairs of faults cannot be distinguished from each other: - 1) when $\gamma_2^p = \gamma_3^p = 0$ -- closing of the 3-rd contacts of the 2-nd and the 3-rd blocks; - 2) when $y_2^p = 0$, $y_3^p = 1$ -- closing of the 3-d contact of the 2-nd block and closing of the 4-th contact of the 3-rd block; - 3) when $\chi_2^p = 1$, $\chi_3^p = 0$,—closing of the 4-th contact of the 2-nd block and closing of the 3-rd contact of the 3-rd block; - 4) when $\sqrt[p]{2} = \sqrt[p]{3} = 1$ -- closing of the 4-th contacts of the 2-nd and 3-rd blocks, and the corresponding faults are not monitored at all by the remaining two assemblies. We have thus shown that in the case of closing it is necessary, in addition to the foregoing ones, to have at least one more assembly. Thus $$t_n \ge 2(n-1)+4+2=2n+4$$. Table 14 | | Type of | Faults | |---|-------------|--------| | Gaps | 6 | 1, | | in the 2nd contact
in the 3rd contact
in the 1st or 4th contact | 1
1
0 | 1 | Table 15 Table 16 lst possibility $f(\delta') = 1$. $f(\delta'') = 0$ * | Blocks | lst | 2nd | 3rd | 4th | | (n-1) th | 71-th | |--------|---|-----|-----|--
---|----------|--| | | j | () | | The second secon | | 1 | 3 | | β2. | l |) | () | *** | | ł | ì | | ; ;33 | • | 3 | • | f) | A Commission with the state of | | The state of s | | | | | | | | | | | βn −2 | Print P | 1 | , | | | () | * | | βn−1 | of Control Annual Control Con | 1 | 1 | , | s to the same and a framework | | (1 | and possibility $f(\delta') = f(\delta'') = 1$ | Blocks | 2nd | 3rd | 4th | 5th | (n-1) th | n-th | |---|--|--|-----------|-----|----------|------| | β2 | 0 | the state of s | 1 | 1 | • | 1 | | β3 | 1 | () | | 1 |] | 1 | | β4 | 1 | 1 | () | 1 | 1 | 1 | | ; *** *** *** *** *** *** *** *** *** * | | | | | | | | βn−1 | The state of s | 1 | | | | | | βn | | The state of s | | 1 | 0 | | Table 17 | 2 | | | | | | | | | | | |-----------------|--------------------|---|--|-------------------|----------|----------|---|--------------------------|---------------------------------------|-------| | 1 | 43.17 | **. | € . | ٦ | Φ | . | | : | , , , , , , , , , , , , , , , , , , , | | | 1 | 11 | | | | | . | • | | | | | 1 | ert. | | : : | AM 6444 | | | * | | | | | | 1, 41 | • | , de .
*100 | S | = | = ; | | | | | | | | | ······································ | <u></u> | = | • | | en i ma manari en i | | | | ; | - 13 (
- 13 - 1 | | | | | | | | | | | į | # . | moje | c | \$ | \$ | c | | - | - | | | !
} سپ | | | | | | = | | | | | | | 7 | Freq | Tark 1 | . | : | | | ا بينا
الاستون ديساند | | ***** | | 1677 | 1 | | | • | | • | | | | | | | 1 | | | , | , | • ; | | | | • | | | | | · · · · · · · · · · · · · · · · · · · | c | ~ | | | | 2014 1 West 1001 \$6.000 | | | 0-19 | 5th | | | | | | | | | | | | II N : | ·*~~ |
C | 2 | c | - | | | 9004 | a | | | | | | · | | | | | | | | دي. | 4th | | | | | | | - | | | | 2 | - 3 | **** | : | C | - | 5 | • | proof | | | | 383 | | ···· } | | | | | | | | Part | | G. | 3rg | | | v 100 r. n. n. n. | t | | | | | | | 3rd possibility | M | Prop | ¢. | | 5 | | • | - | p=a | 1000 | | 7 | į | ere oran u
Soyr | | | | | | | | | | | 2nd | | | | | | | | | | | : | 24 | | Free | # | | | | | | | | | د4. | • | en a anno | **** * | | | • | | | | | | 18t | There are, or the state of the state of | | y t | | | | | | | | ŧ | | က္ | | | | ļ | | Çı . | 7 | | | | COC | Con-
tacts | (1) | 34. | 135 | offs. | | 21
1
850 | i-u: | 3. | | , | Blocks | C + | | | 1 | | | ļ | | 1 | It now remains to prove the inverse. For this we construct a test of length 2n + 4. We put* $$T_{n} = \left\{ \delta' = \begin{pmatrix} 0, \dots, 0, 0 \\ 0, \dots, 0, 0 \end{pmatrix}, \quad \delta'' = \begin{pmatrix} 1, \dots, 1, 1 \\ 1, \dots, 1, 1 \end{pmatrix}, \quad \gamma' = \begin{pmatrix} 0, \dots, 0, 1 \\ 0, \dots, 0, 0 \end{pmatrix}, \\ \gamma'' = \begin{pmatrix} 1, \dots, 1, 1 \\ 1, \dots, 1, 0 \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} 0, \dots, 0, 1, 0 \\ 0, \dots, 0, 1, 0 \end{pmatrix}, \\ \beta' = \begin{pmatrix} 0, \dots, 0, 1, 0^{*}, 1, \dots, 1 \\ 0, \dots, 0, 1, 1, 0, \dots, 0 \end{pmatrix} (i = 2, \dots, n), \\ \alpha' = \begin{pmatrix} 1, \dots, 1, 0, 1^{*}, 1, \dots, 1 \\ 1, \dots, 1, 0, 0, 1, \dots, 1 \end{pmatrix} \quad (i = 1, \dots, n) \right\}.$$ * The asterisk denotes the i-th column. Table 18 | | Type of fault | | | |--|------------------|------------------|--| | Short | γ' | γ'΄ | | | в 1-м блоке во 2-м контакте i ≥ 2 блока в 3-м контакте i ≥ 2 блока в I-м вли I-м контакте i ≥ 2 блока | 1
0
1
0 | 1
0
0
1 | | KEY: 1) in the 1st block; 2) in the 2nd contact of the bloc $i \ge 2$; 3) in the 3rd contact of the block $i \ge 2$; 4) in the 1st and 4th contact of the block $i \ge 2$. Table 19 2nd possibility $f(\gamma') = f(\gamma'') = 0$ | The second secon | | 2nd b1 | 3rd bl |
(n-1)th bl | n-th b1 | |--|------------------|--------|--------|----------------|---------| | Control of the Contro | α^2 | 1 | 0 |
0 | 0 | | | αS | 0 | 1 |
0 | 0 | | | g d b | 1 • • | |
 | | | | Nighten j | 0 | 0 |
1 | 0 | | | CE ST | 0 | 0 |
0 | 1 | Table 20 3rd possibility f(Y') = 1, f(Y'') = 0 | | 2nd bl | 3rd bl | | (a-1)th bl | #-th b1 | |------------|--------|--------|-----|------------|---------| | al | 1 | 0 | | 0 | 0 | | a 2 | 0 | 1 | | 0 | 0 | | | | | • • | | | | a*-2 | 0 | 0 | | 1 | 0 | | a*1 | 0 | 0 | | 0 | 1 | Table 21 4th possibility $f(\gamma') = 0$, $f(\gamma'') = 1$ (n-2)th (n-1)th n-th 4th 5th 2nd Court. i Ct I 1) σ^2 ĭ ì 3^3 œ"---2 d*-1 $\mathbf{0}$ 0, $\alpha^{\boldsymbol{w}}$ It is stated that T is a test. Let us analyze separately three cases: I. The circuit does not conduct with at least one of the assemblies δ ', δ ", ϵ , and δ ¹(i = 2, ..., n). In Table 14, depending on the states of the network with the assemblies δ ' and δ " we indicate several possibilities. For further localization of the fault we make use of Tables 15--17. This completes the analysis of faults in the case of an open circuit. II. At least with one of the assemblies χ' , χ'' , are χ^{1} (i = 1, ..., n) the circuit conducts. The possibilities that are present here are indicated in Table 18. With the aid of Tables 19-21 we localize the fault in blocks 1 \geqslant 2. These tables make it possible to complete the analysis of the faults in the case of a closed circuit. III. The network conducts with all the assemblies χ' , χ'' , ξ , and $\beta^{\dot{1}}$ (i = 2, ..., n), and it is open with all the assemblies χ' , χ'' , and $\alpha^{\dot{1}}$ (i = 1, ..., n). In this case the network is in working order. This proves the theorem completely. proves the theorem completely. $$a_2$$ b_2 a_3 a_4 a_5 9. Ordered and Tentative Tests. Thus far we have considered principally the question of the procedure for constructing tests, without taking into account the specific nature of their utilization. It must be indicated here that in the monitoring of a network, we, first of all, test the assemblies in a definite order, and secondly, as a result of each test we obtain information concerning the state of the network. An essential characteristic of a test is the time notessary to monitor the network. In this connection, particular significance attaches to the question of the construction of a maximal test, and also the question of the extent to which the test constructed deviates from a minimal one. However, as was indicated earlier (see Sec. 2), the verification time can be reduced also in a different manner, namely by rational utilization of the test already constructed. Definition. An ordered test is the following system of verifying the network: - 1. The test is broken down into groups, written out in a definite order (individual groups may contain also one element each). - 2. After passing through each group of assemblies, information is fixed regarding the state of the network. 3. If this information is sufficient to detect a fault, then further tests are discontinued, and in the opposite case, one proceeds to the next group. a system of running through the test, we can obtain the necessary information concerning the state of the network in individual cases (to detect a fault, for example), by running through only part of the entire test. An ordered test is characterized by a mathematical expectation of the length of the used part of the test. It is clear that corresponding to different arrangements of the group will be different values of mathematical expectations. It is therefore natural to strive for such an arrangement of the group, at which the minimum mathematical expectation is obtained. When obtaining intermediate information it may turn out that in the remaining part of the test, the remaining assemblies will be superfluous, i.e., that running through these assemblies does not add to the information concerning the network. We shall analyze this circumstance in greater detail. For this purpose we introduce several symbols and definitions. Assume that for a network ${\cal N}$ there is fixed a set of fault functions ${\cal M}$ and a set ${\cal N}$ of pairs of fault functions in the sense of Sec. 2. We denote by ${\bf T}_{\rm O}$ a certain set of assemblies. It is obvious that as a result of running through the assemblies T, we obtain information I_i concerning the network \mathbb{O} (i = 1, 2, ..., s_0). The information I_i can be characterized by the function $\phi_{\mathtt{j}}(\mathtt{e}),$ which assumes values 1 or 0 on the assembly e \mathcal{E} T_O, depending on whether or not the investigated network conducts with the assembly e. We note that the functions ϕ_i (e) are specified only on the set To We denote by $\mathfrak{M}_{\mathbf{I}_{1}}$ the set of such functions $f_j(e)$ from M, that $f_j(e) = \varphi_i(e)$ for $e \in T_0$. This definition of the set $\mathfrak{M}_{\mathbf{I}_{i}}$ can be decoded in the following manner. We arrange in some manner the assemblies from the set $T_0 = (e^i, e^{ii}, ...)$. From the table of the fault functions M we pick out those functions, which assume that the assembly e' a value $\mathcal{G}_{i}(e')$. From the resultant set we pick out further those functions, which assume a value $\mathcal{G}_{i}(e^{n})$ with the assembly e^{n} , etc. Running through all the assemblies of the set To, we obviously obtain M I. We denote by \mathcal{M}_{I_i} the set of those pairs (f_j, f_k) from \mathcal{M} , for
which f_j and $f_k \in \mathcal{M}_{I_i}$. Let T_{I_i} be the test corresponding to the set of the fault functions \mathcal{M}_{I_i} and to the set of the pairs of fault functions \mathcal{M}_{I_i} (T_{I_i}) may prove to be empty). Definition. A Tentative test T is called the following system for testing a network. - 1. The set T_0 fixes the information T_i (i = 1, 2, ..., s_0). - 2. Depending on the information \mathbf{I}_i obtained, further verification of the network is made with the aid of test $\mathbf{T}_{\mathbf{I}_i}$. The tentative test is shown schematically in Fig. 41. From the definition of the tentative test it follows directly that the set of assemblies $T = \left\{T_0, T_1, T_1, \dots, T_{1_{SO}}\right\}$ is a test in the ordinary sense. Obviously, the construction given can be repeated many times. Namely, if the information I_i does not give a complete answer concerning the state of the network, we take the set of ascemblies T_1^i , where $T_1^i \cdot T_0 = N$. We then obtain supplementary information, etc., generally speaking until we obtain complete information concerning the state of the network. In this case, the tentative test is represented in the form of a "tree" (Fig. 42). Here the role of T_0 (see definition) is played by the tree. In particular, it may be found that each of the sets T_i^i consists of exactly one element. For simplicity, we confine ourselves to an examination of the simplest tentative test, i.e, the case shown in Fig. 41. Definition. The length of a tentative test T_t is called the quantity $t_t = \max(t_0 + t_{I_1}) = t_0 + \max t_{I_1}$, where t_{I_1} is the length of the test T_{I_4} . It follows from the definition that it is possible to construct a tentative test $T_{m{y}}$ of length $$t_{\rm p} \lesssim t_{\rm min}$$. For this purpose it is enough to take on T_0 the subset of T_{\min} , and to take for T_{\min} the minimal test contained in $T_{\min} - T_0$. It is obvious that the form of the tentative test depends essentially on the choice of the set T_0 . It remains unclear under what cases can one construct a tentative test T_y such that $t_{y..} < t_{\min}$. The question also arises of whether there exist for any tnetative test T_y of length $t_y \le t_{\min}$ such a value of i, at which $t_0 * t_{I_i} < t_{\min}$. We give an example of the construction of a tentative test. Example. Tentative Test for the Comparison Network. Here we start aut with the comparison network considered in Sec. 8. We choose for T_C the set of assemblies $\left\{\ \xi^{\,\prime},\ \xi^{\,\prime\prime},\ \xi^{\,\prime\prime},\ \text{and}\ \chi^{\,\prime\prime}\ ,$ where again $$\epsilon' = \begin{pmatrix} 0, & \dots, & 0, 0 \\ 0, & \dots, & 0, 0 \end{pmatrix}, \quad \epsilon'' = \begin{pmatrix} 1, & \dots, & 1, 1 \\ 1, & \dots, & 1, 1 \end{pmatrix}, \quad \gamma' = \begin{pmatrix} 0, & \dots, & 0, 1 \\ 0, & \dots, & 0, 0 \end{pmatrix},$$ $$\gamma'' = \begin{pmatrix} 1, & \dots, & 1, 1 \\ 1, & \dots, & 1, 0 \end{pmatrix}.$$ From the scheme and the tables we have the following: - assembly &:, then either the 1-st or 4-th contact of the i-th block (i > 2) are opencircuited, or else the 1-st contact of the 1-st contact of the l-st block. - 2) If the network is open-circuited with assembly δ ", then the 2-nd contact of the i-th block (i \geqslant 1) is open-circuited. - 3) If the network is short-circuited with the assembly %, then either the 3-rd contact of the i-th block (i >> 2) is short circuited or one of the contacts of the l-st block is short-circuited. - 4) If the network is whort circuited with the assembly γ ", then either the 1-st or 4-th contacts of the i-th block (i \geqslant 2) are short circuited, or else one of the contacts of the 1-st block. As a result of running through the assemblies T_0 , we obtain one of the possible informations I_0 , I_1 , I_2 , I_3 , I_4 , I_5 . These informations are characterized by Table 22. Each of the informations describes the state of the network, namely: I_0 denotes that either the network is in working order or else there is a short circuit in the 2-nd contact of the i-th block ($i \ge 2$) or an open circuit in the 3-rd contact of the i-th block ($i \ge 2$); I_1 denotes that the open circuit is either in the 1-st or in the 4-th contact of the i-th block ($i \ge 2$), or in the 1-st contact of the 1-st block; I_2 denotes that the open circuit is in the 2-nd contact of the i-th block ($i \ge 1$); I_3 denotes a short circuit in the 1-st block; I_4 denotes a short circuit in the 3-rd contact of the i-th block ($i \ge 2$); I_5 denotes a short circuit either in the 1-st or in the 4-th contact of the i-th block ($i \ge 2$). Table 22 | Assemblies | I_0 | <i>I</i> ₁ | I_2 | <i>I</i> ₃ | <i>I</i> ₄ | 15 | |------------|-------|-----------------------|-------|-----------------------|-----------------------|----| | 8' | 1 | O | 1 | 1 | 1 | l | | 8" | 1 | 1 | 0 | 1 | 1 | 1 | | γ' | 0 | o | 0 | . 1 | 1 | 0 | | γ" | 0 | 0 | 0 | 1 | o | 1 | Now, to complete the construction of the tentative test, it remains to write out the tests $\mathbf{T}_{\mathbb{I}_{i}}$: $$T_{I_0} = \{\alpha^2, \alpha^3, \dots, \alpha^n; \beta^2, \beta^3, \dots, \beta^n\},$$ $$T_{I_1} = \{\varepsilon, \alpha^2, \alpha^3, \dots, \alpha^n\},$$ $$T_{I_2} = \{\varepsilon, \alpha^2, \alpha^3, \dots, \alpha^{n-1}\},$$ $$T_{I_3} = N - \text{empty set}$$ $$T_{I_4} = \{\beta^1, \beta^2, \dots, \beta^{n-1}\},$$ $$T_{I_5} = \{\beta^1, \beta^2, \dots, \beta^n\}.$$ The fact that the listed sets T_{I_0} , T_{I_1} , T_{I_2} , T_{I_3} , T_{I_4} , T_{I_5} are tests, following directly from the arguments given in Sec. 8. We note that a tentative test essentially represents a scheme for proving that the set $\left\{T_0, T_{I_1}, \dots, T_{I_{S_0}}\right\}$ is a (unconditional) test. This note makes it possible to extract in many cases the construction of the conditional test from the proof of the test. To describe a conditional test we consider the mathematical expectation of the length $t = t_0 + t_{1i}$ of the employed portion of the conditional test. This quantity is proportional to the average time of monitoring the network. The introduced probability characteristic is meaningful if it is established that the faults appear with a definite frequency. In practice one can always consider that this takes place, when we deal with an adjusted network. In this case one can determine by statistical means the probabilities of the appearance of various faults. We denote by $P(I_i)$ the probability that in running through T_0 we obtain the information I_i . Obviously, the sought mathematical expectation can be found from the formula $$t = \sum_{i=1}^{s} (I_0 + t_{I_i}) P(I_i) = t_0 + \sum_{i=1}^{s} t_{I_i} P(I_i),$$ since $$\sum_{i=1}^{r} P(I_i) = 1.$$ We calculate t for the preceding example. Let p be the probability of the network being in working order, q = 1 - p the probability that there is a single fault in the network -- a short circuit or an open contact.* We assume that the probability of all the faults are equal to each other, i.e., q/2(4n - 2). We calculate the values of $P(I_i)$ We calculate the variation of $$P(I_0) = p + \frac{n-1}{4n-2} q$$, $P(I_1) = \frac{2n-1}{2(4n-2)} q = \frac{q}{4}$, $P(I_2) = \frac{n}{2(4n-2)} q$, $$P(I_3) = \frac{q}{4n-2}, \quad P(I_4) = \frac{n-1}{2(4n-2)} q$$, $$P(I_5) = \frac{n-1}{4n-2} q$$; $$i = 4 + \left(p + \frac{n-1}{4n-2} q\right) 2(n-1) + \frac{q}{4} n + \frac{n}{2(4n-2)} q(n-1) + \frac{n-1}{2(4n-2)} q(n-1) + \frac{n-1}{4n-2} qn = 2n + 2 - q \left[\frac{3}{4} n - \frac{7}{8} - \frac{1}{8(2n-1)}\right].$$ Since $t_y = 2n + 2$, then $$i = t_y - q \left[\frac{3}{4} n - \frac{7}{8} - \frac{1}{8(2n-1)}\right].$$ This relation shows that the average length of the tentative test differs substantially from the length of the tentative test in the case when q is not very small. However, if q is not very small, then the network operates with frequent breakdowns and consequently needs adjustment. Thus, under normal conditions the average length of the tentative test deviates little from the length of the tentative test. * Consequently, the probability of appearance of faults in more than one contact is 0. In the preceding argument the calculation was based on the assumption that the tests $T_{I_{\dot{1}}}$ are run through completely. However, there is no need for running through $T_{I_{\dot{1}}}$ completely, if the fault has already been localized. Consequently, it is convenient to consider each of the tests $T_{I_{\dot{1}}}$ as an ordered test. ## 1C. Test for a Binary Summator Network The advantage of the conditional test is particularly clearly seen from an examination of the problem of finding a single fault for a single binary summator network /1/. We start with the following scheme for adding two n-column numbers, specified in binary form $$+\frac{a_n a_{n-1} \ldots a_1}{b_n b_{n-1} \ldots b_1}$$ $$\frac{s_{n+1} s_n s_{n-1} \ldots s_1}{s_{n-1} \ldots s_n}$$ If we denote by c_i the result of the carry in the (i + 1)-th column, we obtain the following recursion formulas $$s_{i} = \bar{a}_{i} (b_{i}c_{i-1} \vee b_{i}c_{i-1}) \vee a_{i} (b_{i}c_{i-1} \vee b_{i}c_{i-1}),$$ $$c_{i} = \bar{a}_{i}b_{i}c_{i-1} \vee a_{i} (b_{i} \vee b_{i}c_{i-1}),$$ $$c_{i} = \bar{a}_{i} (b_{i} \vee b_{i}c_{i-1}) \vee a_{i} b_{i}c_{i-1},$$ where i = 1, 2, ..., n, c₀ = 0, c̄₀ = 1, s_{n+1} = c_n. Starting with these relations, it is easy to obtain the binary summator of interest to us. This network consists of n blocks of three types (Fig. 43). The blocks are connected as shown in Fig. 44. Thus, the binary summator network represents a block network. However, unlike the comparison network, we have here a more complicated connection between blocks. It is therefore quite natural to refine further the procedure for setting up tests for the block networks.
Assume (1) that we have a network made up of a small number of types of different blocks. We assume furthermore (2) that no relay can act on several blocks, and that each block is controlled by a small number of relays. Finally, we assume (3) that in each type of block's the poles are broken up in an identical manner into inputs and outputs so that the inputs (or respectively the outputs) have the separability property (see below, p. 342 /of source/) and that in the network the current always enters into a block which is in working order only through the inputs and leaves the block only through the outputs.* In the investigation of block diagrams we first make up, in accordance with the network, a table of "transfer" and "output" numbers, which shows the dependence of the states of the output on the states of the input in the case when the given block is in working order. This table explains the possible states of the inputs of a given block under the assumption that all the remaining blocks are in working order. The next stage is to disregard the connections between blocks and to consider each block independently as a multi-terminal network. The state of this ^{*} This limitation is imposed in order to facilitate the calculations. multi-terminal network is determined by specifying an assembly α_1^i , ..., α_k^i , β_1^i , ..., β_k^i , where α_1^i , ..., $\alpha \stackrel{i}{\underset{k}{\sim}}$ and $\beta \stackrel{i}{\underset{1}{\sim}}, \ldots, \beta \stackrel{i}{\underset{1}{\sim}}$ describes respectively the state of the inputs and the relays of the given block. Ohviously the state of the outputs of the multi-terminal network will determine the value of $F(\alpha_1^i, \ldots, \alpha_k^i, \beta_1^i, \ldots,$ $(\frac{1}{6},\frac{1}{6})^*$ of the function F. Using the general algorithm described in Chap. I, we can construct a minimal test. These assumptions reduce to the fact that we shall deal with a small number of uncomplicated tables of fault functions. The latter leads to a relative simplicity of calculations. The constructed tests for the blocks give the necessary conditions that characterize the test for the entire network: namely they indicate what combinations of significant figures should be encountered in the assemblies belonging to the test. This makes it possible to construct the base of the test, i.e., the set of assemblies containing the maximum number of assemblies and having the following properties. Let us take an arbitrary block. Corresponding to this block is a group of variables. Each assembly β of the base of the test determines an assembly for the considered block, and for this it is necessary to join to part $\beta_1^1, \dots, \beta_I^1$ of the assembly β : $=(\ldots,\beta_1^i,\ldots,\beta_k^i,\ldots)$, corresponding to the given variables, the assembly $\alpha_1^i,\ldots,\alpha_k^i$, corresponding to the states of the inputs of the considered block, when the network is in the state β . The constructed set of assemblies $\{(\alpha_1^i,\ldots,\alpha_k^i,\beta_1^i,\ldots,\beta_k^i)\}$ should be a test for the i-th block. We shall not give here a formal description of the construction of the base of the test relative to a minimal test of each block. We note only that even if it is known that the i-th block is out of order, we cannot always, generally speaking, determine with the aid of the base of the test the character of the fault (see Sec. 8, item 3), since the state of the network is determined from the states of the inputs of the network, and the state of the i-th block is determined from the states of the outputs of the block. Thus, the base of the test, as a rule, will not be a test and it must be broadened to a test. This step requires a more rigorous accounting of the character of the connections between the blocks. Let us consider a block network satisfying condition 3. This limitation is stronger than the requirement that the inputs and the outputs of the blocks be separable, i.e, the requirement that the admittances between each pair of inputs (outputs) of each block be identically equal to 0. (see Reference [8]). In fact, let each block consist of one contact, i.e., let it have one input and one output, and then in the network shown in Fig. 45, each block is trivially separable, but condition (3) is violated for the "bridge" block v (Fig. 45). Thus, condition (3) imposes limitations not only on the properties of the blocks but also on the properties of their connections. The concept of separability along with other limitations was introduced by Shannon 287 for one special case of the junction of multi-terminal networks, in order to exclude the presence of admittances from one pole to another, which, leaving the block, again would return to it and again leave it (Fig. 46). Incidentally, for block networks satisfying requirement 3, the existence of conducting circuits,* which return to a given block (feedback), as shown, for example, in Fig. 47, is not excluded. The presence of feedback raises difficulties in the investigation of block networks. We shall not attempt to offer a general theory for such networks, but to eliminate "returning" ircuits we shall first narrow down the class of admissible block networks. For this purpose we consider networks which represent "series connections" of blocks, in each of which the poles are broken up into inputs and outputs. When connected in series, the blocks form an ordered aggregate. With this, the network either has a single input and several outputs or a single output and several inputs. In the former case the input of the network can be joined to any input of each block, and the outputs of the network can be connected with the outputs of the blocks; in the second case the output of the network can be connected with any output of each block and the inputs of the network can be connected with the inputs of the blocks. In addition, only connections between the outputs of a block and the inputs of the next block, or between the inputs of a block and the outputs of the preceding block, are possible. For the former case the series connection of the blocks is shown schematically in Fig. 48. Examples of networks of this type are a network for parity counting, a comparison network, and the binary-summator network. ^{*} By conducting circuit is meant here a circuit between arbitrary vertices of the network, for which the admittance is not equal to 0 identically. Let us assume now that there is a fault in the i-th block. Obviously, this fault can change the state of the outputs not only of the i-th block alone. latter circumstance is due to the fact that as a result of the fault there is a possibility of current flowing along new circuits both on the side of the (i & 1)-th block (forward wave) and on the side of the (i - 1)-th block (backward wave). It is clear that if no limitations are impose, a wave moving in a definite direction may in a certain block be "reflected" and returned in a backward direction. This phenomenon can take place with multiple reflections. Thus, in networks represented by series connection of blocks, feedback can also exist. The occurrence of reflected waves makes the calculation of the changes in the states of the outputs very difficult. However, in the cases considered here no wave reflection takes place and this allows us to examine independently the changes in the states of the outputs of the (i * 1)-th, (i * 2)-th, ... blocks due to the influence of the forward wave, and changes of the states of the outputs of the (i - 1)-th, (i - 2)-th, ... blocks due to the influence of the backward wave. Fig. 45 Table 23 | C ; C ; | 1) () | 0 1 | | | |---------|---------------|--------|--------|--| | a,b, | $v_i c_i s_i$ | ryrisi | ENG ST | or a construction of the second secon | | 0.0 | # 1 () | 010 | 011 | U 1 1 . | | (1) | 0 () () | 1) 1 1 | 1,00 | | | 1.0 |
00 | 0 1 1 | 100 | | | 4 | 100 | 100 | 101 | 1 47 1 | 77 10 ţ-Table of Fault Functions **CD** 1~ (~ 77 73 ဗ ~ 10 ¢, Crà 1-00 -3 Short . ග **6**** . 1~ ıσ 10 -és ယ္ ŝ ¢4 **(~** ಛ ¢ 8 43 ĸŢ. ö 0 Φ . 0 0 0 ¢. 0 Carry c(-1ci-1 \$ 0 - 142- Table 24 (2nd half) | Takan wift o class of the | | | giovani 2 | | | | 5 | Sec. | | F | |--|--|--|---|-------------|------------|-----|--|------------------------------
--|-------------------------| | unings out y the best of b | | è l | | | : * | | -many for the section of | Arga 64744 AAR - 1884 - 1884 | | ma yaayaagaarra minin k | | al particular and the second | and south tripped and an an | FC . | | \$ 3 | | | way water Jana Bay May 19 Jana - Grade | | | | | eanagetherradon | | 2.00 | | | | | 71 | | | | | a experience of the second | and the state of t | | ny reference (none professivore) | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | 4 | Ġ1 | , magang a regularing distribution detector (A. | | | | | | The second secon | | | | | | - Annews and Annews and Police | - | | | | | | | | | | 10. | 0 | | | | part. | | - | | | | 14
14 | Ъъ | ay, makayab ka asalak da reserbi | | | 9 | | | - | | | | Break | òr. | 2 | | | | | | 9 | | | | | Ĭ- | | | | | | 9 | | | | | - Proposed Street Colonials | ؿ | | | 51 | 1 | | | | - | | | | 'n | | 04 | | | 61 | | | | | <u>V</u> | | with the same of t | | | p.m. | | | _ | _ | - | | ٧
ع | Aggreed maps larged alleger | èq | 0 | ••• | | | , , , , , , , , , , , , , , , , , , , | | | - | | lock | gt jacassustation, pro | è4 | agor a agus agus agus agus agus agus agus ag | | | c | | _ | | _ | | ult in 1-th block $(2 \le i \le n$ — | | - | | | | | . | = | | 1 | | - - - | | 15 | | 1 | | 150 | - | | | | | ب.
ب <u>ب</u> | and the same of th | 15 | 65 | | 1 | | | | !- | | 143 | | Z, | n n | - | e i | တ | -7 | |---|----------|----------------|----|-----|-----------------------|-----| | | | 6, | | | - | | | | | , 1 | | | 7 | | | lock a | Break | ģ | | 67 | and the second second | | | lst
H | Br | 2, | | - | | | | Table of Fault Functions in 1st Block a | | ,, | | | | 0 | | unction | | လ | | | l va | | | ault b | | ** | ec | | | | | of F | Short | on: | | | | ic. | | Table | ₽57
1 | c, | | | | 9 | | | | | | - | e same | | | | (| 2 | ç4 | n | ಣ | 4 | | | | 6 | Ö | - | c | | | | | 2 | 0 | 0 | - | | We shall consider below exclusively only those networks that satisfy conditions (1) -- (3) and represent a series-connected blocks. The following theorem gives a criterion for the absence of reflected waves. Theorem. There are no reflected waves if a network, representing a series connection of blocks and having properties (3) contains a single fault. The proof is almost obvious. Note. In networks representing a series connection of blocks, the presence of property (3) is equivalent to the presence of separability of the inputs and outputs of each block and to the forbiddenness of the connection between one output (input) of a block and several inputs (outputs). We shall see later on that by tracing the waves one can choose the base for a test and then broaden it to a test having sufficiently short length. We now show the appearance of the construction of a conditional test for a binary summator. Since the foregoing theorem holds for a binary-summator network, we are justified in considering the effect of the waves independently. We first investigate the effect of the forward wave. Since the construction of the test for a binary summator is cumbersome, we Laborated the process into stages. - Numbers. In order to take into account the connections between blocks and also in order to clarify the permissible states of the outputs of the faulty block, we make up a table (see Table 23) of transfer and output numbers for the i-th block ($2 \le i \le n-1$). It is easily seen that the outputs of the faulty block can be only in one of two possible states, (0 1) and (1 0). We shall use this circumstance in the next step. - Here we start with numbering the contacts as indicated in the diagrams. In the diagram of the n-th block we use a non-through numbering, since this reflects the fact that the n-th block is obtained from the i-th block (2 \leq i \leq n-1) by excluding a series of contacts, connected with the output \bar{c} . In the fault tables 2^{l_1} 26, the states of the inputs are written in the form of two-digit binary numbers; the states of the outputs are written for the sake of brevity as decimal numbers corresponding to the binary numbers $c_1\bar{c}_1s_1$ (i = 1, 2, ..., n 1) and $s_{n+1}s_n$. From Table 2^{l_1} we have $f_0 = f_{l_1}$, $f_{13} = f_{15}$, $f_{14} = f_{16}$, $f_{1} = f_{7}$, and $f_{l_1} = f_{12}$. From the diagram of the 1-st block (see Fig. 43) it is seen that $f_2 = f_6$, $f_3 = f_8$, $f_4 = f_7$, f_1 : = f_5 :, f_3 : = f_7 :, and f_4 : = f_8 : By virtue of the symbols used, and also by virtue of the structure of the n-th block, the table of fault functions for the n-th block (Table 26) is obtained from the table of fault functions for the i-th block (Table 24) by leaving in the latter the corresponding columns and replacing them 2 by 0, 3 by 1, 6 by 4, and 7 by 6 (the second binary digit is always 0). From Table 26 we have $f_{13} = f_{15}$, $f_{14} = f_{16}$, and $f_{11} = f_{71}$. certain faults have become indistinguishable. The question arises: what can be said relative to the indistinguishability of faults in the entire network? Thus, let f_j^i denote a function of the j-th fault of the i-th block, f_0 -- a function corresponding to the operation of the properly-working network.* Since in the network under consideration there is no feedback (reflection of waves) and since no feedback appears for faults of the open-circuit type, it is obvious that we have for the l-st block for the i-th block (2 \leq i \leq n - 1) $f_1' = f_1', \quad f_2' = f_3'$ and for the n-th block مباغ Here the functions depend on 2n arguments $\begin{pmatrix} a_+, \dots, a_+ \\ b_-, \dots, b_- \end{pmatrix}$, which assume values 0 and 1; the values of the functions themselves are integers from the segment $\begin{bmatrix} 0, 2^{n+2} - 1 \end{bmatrix}$. Furthermore, since all the circuits that arise as the result of feedback and go to the output s₁ of the 1-st block pass through the input of the network, these feedbacks provide no new possibilities for monitoring either the 1-st or the 2-nd block. Therefore $$f_{2}^{1} = f_{6}^{1}, \ f_{3}^{1} = f_{8}^{1}, \ f_{4}^{1} = f_{7}^{1},$$ $$f_{6} = f_{4}^{2}, \ f_{13}^{2} = f_{15}^{2}, \ f_{14}^{2} = f_{16}^{2}.$$ It is seen therefore that the 4-th contact of the 2-nd block is superfluous. We shall show below that $f_{13}^i = f_{15}^i$ and $f_{1l_i}^i = f_{16}^i$ when $3 \le i \le n$, and also that no new identifications are produced (all the remaining faults will differ). It is easy to establish from Tables 24 -- 26 that assemblies 1 -- 4 are a minimal test (trivial) for the verification of the 1-st block, and that Table 26 (1st half) | o destruction | . Milmellion | | or's to man velicity. Association deposed | erosi. | To H | Short | unctio | me da | n-th | Table of Fault Functions in n-th Block
Short |
--|-----------------------------------|--|---|--|------------------------------|--
--|--|--|---| | · · · | \$ | - | 2 | A 44. | အ | 1 - | | 6 | 65 | grand | | 0 | y and liferal and a highest life. | V. 100 117 110000 | | Managaria de Caractera Carac | st | | | grand | - | dereces and all the con- | | | ,
 | dental say on the product | ĸċ | | 15 | | 4 | diff's tribu Min qualification of | The state of s | 1.3 | | 0 | | CONTRACTOR OF THE STREET | Milder de contigue de piper inglân e de g | ıç | | | | 300 | 10 | | | mentera a sepa en la consentada a la composición de del composición de la del composición de la composición de la composición de la composición de la composición de la composición de la composición del | | 17 | | 1.7, | | Charleston spaces would be Marian. | 10 | | A Commission of the | g da | | 0 | | die Lefter (Spiritale Europe ausgeber von geschießen geschieße | r.c | - Advanced to the control of | -mark pas, Stricks Brokenmar | 1/2 | | | | 7 | | moné
séda | | *************************************** | | daji spodi se <u>sagan</u> | 177 | Transferding by Special Company of the Specia | | | | 1.7 | | O . 1 | | | | 13 | | <i>3</i> 6 | | - Applied for present signature of the second section section of the second section of the second section of the second section of the sectio | ıs | | | ern vondenstehnomenden
\$500
warnet genemmen stylligie
geneg | | *************************************** | to-minimus as upriving | TO COMMUNICATE SQUARES | ** without the encodates | | And an involved an experimental section of the sect | diction garquindays.c | | | Table 26 (2nd half) | Z. | = | | c s | es | | S 2' | ဗ | 7 | 7 | |-------|--------|-----------------------|-----|----|----|-------------|----|----|----| | | .91 | | | 0 | | | | | | | }- | jg. | | C | | | | | | | | | , | and the second second | | | | Ģ | | | | | | 13 | | | | | | | | 44 | | | 9, | | _ | | 0 | | | | _ | | ak |
òc | | _ | | | | | 0 | | | Break | i- | | _ | | | - | e | - | | | | | _ | _ | 0 | | _ | _ | | | | | 6, | | _ | | _ | | _ | | | | | 3, | | 0 | | | 0 | _ | _ | _ | | | ,23 | | | | C | | | 0 | | | | - | | | | | | 0 | | | | | 16 | | 1/2 | | ic | | 22 | | | | | | | | | | | _ | 5. | | assemblies 2--8 are a minimal test for the verification of the i-th block (2 \leq i \leq n). In fact, the direct breakdown (see Chapter I, Sec. 3) shows that the foregoing sets are tests. Since assemblies 1 -- 4 in the case of the l-st block and assemblies 2 -- 8 in the case of the i-th block (i \geq 2) must enter (Chap. I, Sec. 3, Item 3) into any test for the corresponding block, the foregoing sets are minimal tests. Now, starting out with tests for the individual blocks and a table of transfer numbers, we shall attempt to construct assemblies that form the set T_0 in such a way, that T_0 have the least possible length and that the information obtained after running through T_0 would permit ready implementation of the conditional test by adding in each individual case a small number of assemblies. Inasmuch as in the investigated network the 1-st not block occupies a special position, we shall take into account the test for the 1-st block in the construction of T_0 . Thus, we shall construct such a set T_0 that for any i (2 \leq i \leq n) the set of assemblies, each of which is $c_{i-1}c_{i-1}c_{i}c_{i}$, where c_{i-1} is the result of carry in the i-th column, and c_{i} and c_{i} are the i-th columns of the numbers of the set from c_{i} , forms a test for the i-th block. Obviously, this construction can Tead to several different versions of T_0 . We take for T_0 the set $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$, where $$e_{3} = \begin{pmatrix} 0 & \cdots & 0 & 0 \\ 1 & \cdots & 1 & 1 \end{pmatrix}, \quad c_{2} = \begin{pmatrix} 1 & \cdots & 1 & 1 \\ 0 & \cdots & 0 & 0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix}
\cdots & 0 & 1 & 0 & 1 \\ \cdots & 0 & 1 & 0 & 1 \end{pmatrix}, \quad e_{4} = \begin{pmatrix} \cdots & 1 & 0 & 1 & 0 \\ \cdots & 1 & 0 & 1 & 0 \end{pmatrix},$$ $$e_{5} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix}, \quad e_{6} = \begin{pmatrix} 1 & \cdots & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{pmatrix}, \quad e_{7} = \begin{pmatrix} 1 & \cdots & 1 & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix}.$$ The assemblies of the set T_0 are connected with the assemblies of the minimal test for the i-th block as follows: the assembly e_1 is constructed starting with assemblies 2, e_2 is constructed starting with assemblies 3, e_3 -- starting with assemblies 4, 5, e_4 -- starting with assemblies 6, e_6 -- assemblies 7, and e_7 -- assemblies 8. It should be noted here that the length t of any unconditional test T (and also of the base of the test) is not less than 7 when $n \geqslant 2$, i.e, $t \geqslant 7$. To prove this statement we must establish that allowance for the feedbacks cannot reduce the test for the n-th block. Since in the case of an open circuit no feedbacks are produced, if they do not exist in the original network, assemblies 2, 3, 5, 6, 7, and 8 must enter into any test (see Table 26). It is obvious that the closing of the first contact can be detected only when $a_n = b_n = 1$ (see diagram, Fig. 43); here the feedback is produced when there is no carry from the preceding block, i.e, $c_{n-1} = 0$. However, under these conditions closing in the 1-st block is caught directly by the presence of a 1 at the output s_n . Thus, any test must contain the assembly (0 1 1 1), i.e., assembly 4. This proves the statement. IV. Compilation of Information Tables. As a result of running through the assembly e_j we obtain a [n*1)-column assembly. Let us write out the result of running through assemblies e_1, e_2, \ldots, e_7 under the assumption that there is a given fault in the i-th block (i \geqslant 2) and in the l-st block. In Tables 27 -- 29 we shall show only those results which differ from the correct values. Table 27 | | | | سددور ساید است جهید
ادارات | | at. | į.
I | 8. | | 1 | *** | |------------|------------------------|--|--|--|------------------------------|---|---|--|------------------------------|--| | 1 | = | # | **
*** | | 7121 | | | - | | | | į | - | = | r į | í | | ÷*- | * | | | | | i, | | 15 | | N | | | | 100 | į | - | | 1. | | | | | | | | | | 25
25 | | | | = | - | • | ers. | | ## I | | | mag. | | ; | | 5 | · (| | - | 7- | ~ | | | | | 1 | | ., | | | | | | | | | | | | 23 | 1 | 64 | | | ang manahat mengamban men | Marianian Silver | , | | | . | | 21 | | | | | | and the restriction of | | | | Ö | | per. | | | | | | i taligati di Salamania.
A manana man | | | | ĕ | phase against district | Parts | | | | | ಸಾ | 1 | | ~ , | | i-th block | | C | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | P | | Ŧ | | | | | 197 | | | | | | | | ·Y | | pt . | enter de l'agres de deserver e | | 7.5 | | | | • | | ä | | # | | | | | | | | • | | د | 1 | 27 | | nggan og ar som gjenner, ælder græden | : | | | | | | | Short | | <u> </u> | | | | ~ = =================================== | | | | | | ਲ | | to . | 64 | of the state th | CET. | وي المنجود الدين منيس ب | ~ | 65 | | | | | 10 | Þ | | | (F), | *** | | | | | | | | 5 | | 5 1 | and the second second second | 7- | | 10 | | | | | | <₩ | | | | ancia na des cabbidado | | | | | | | | \$0. | | | | | | ~~ | | ************************************** | | | \$2 | m | rı | | | * 2. | | | - | | | | 1 | - | P | | iri. | | | | | | | | | | -, | | ທີ່. | | | | Ages a secure description of | 177 | | | - | | | | | >= | | | | P-, | | ***** | | THE PERSON NAMED IN COLUMN TO PE | | ! | C | = | 3 | 8 | 10 | | | | | | - | | . 1010 | Toto. | | • | • | _ | | | | 0 | | | | | • | • | | , o | | | | | , | | | | 13. | 10. | | | | | | | 5 | 5 | | 1 . | | - | | <u> </u> | | ***** | ė : |) | | Ì | 1 | | | | | Types
of | | | Assem- | of
base | 0 | €, | £" | 2.7 | | , e | 2. | ا الحاج [| | | 50 0 | of
bas | | 1 | | | | 1 | | 100 | Table 28 | even 10'11'12'13' odd ever | 77 1 1 73 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 35 | | | | , | 10 117 1.8 125 128 127 128 129 | |--
--|--|---|---------|---|---|---|--------------------------------| | 10'11'12'13' odd ever | 77 1 1 73 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1/2 Ed. | | | | | | 725 / 28 / 27 / 28 | | 32
34
34
34
34
34
34
34
34
34
34
34
34
34 | 77 | *Ca | | | | | | 125 / 28 / 27 | | 32
34
34
34
34
34
34
34
34
34
34
34
34
34 | 77 | Age
Bull | | | | | *************************************** | 125 128 | | 32
34
34
34
34
34
34
34
34
34
34
34
34
34 | 77 | *CA | | | | | * | 752 | | THE RESERVE THE PERSON NAMED IN | CANADA SECTION OF COMPANY OF THE PROPERTY T | *CX | | | | | | *** | | THE RESERVE THE PERSON NAMED IN | CANADA SECTION OF COMPANY OF THE PROPERTY T | de la companie | | | | erit fig. | | 38 | | THE RESERVE THE PERSON NAMED IN | CANADA SECTION OF COMPANY OF THE PROPERTY T | | | | | ******************** | *************************************** | 1 | | THE RESERVE THE PERSON NAMED IN | CANADA SECTION OF COMPANY OF THE PROPERTY T | | | | - | | *************************************** | | | > | 3 | | | | ~~~~~ | | | · [| | . 0 | · • | | å | | | | 1 + | F. 24 | | 70 | 7) | -Independent at the control | *************************************** | | | ****** | ******************* | ļ | | odd | odi | | TOTAL CAPAGONA | 7, | | | ¥6+1 | 123 | | ď | | | | | ##770704pma_ia_ca | 3 . | | 8 | | t - | | | | | :1 <u>.</u> | | ankleri Greek in <u>to a re-ripolog an</u> | 17 | | હ | ٥ | <i>2</i> 2. | | | | \$860c/simples main | * | E | | M | H É | | | 7 | | *************************************** | : | 18 | | - | | | å | | | | | 1.9 | | *** | * | w. | | | | | *************************************** | 187 | | òn | 0 3 | | | | | | | F17 [18 18 20 [23 [14 [22 | | 1 | 2 | | å | | *************************************** | s. | 147, | /18 | | 2 | Contraction of the o | ex-sections are set up at a | | | | -3- | ***
** | 1 | | even | PPO | | | تي ا | | 4 | ************************************** | /IE | | (WHENTHE PROPERTY | V | | - | | | •• | , Ja | į į | | PPO | 3 | The section of se | | | 3. | | | 1,1 | | (WHENTHE PROPERTY | - | 1 | g: | *** | 210 | | 5 | Types
Offo. | | | | enn managan en | · · · · · · · · · · · · · · · · · · · | 9 5 3 5 | | ± ± ± 10 | | | Table 29 | ا ا | | | | | | <u> </u> | | | | |---------------------------|-----------------------|-------------|----------|-----|----|-------------|------------|------------------|-----------------------------------| | N V | δο | | يع | | ~ | | | | 1,37 | | rapie 27 | i. | ឝ | | | | | | | 136 | | lock
Lock | မ် | | | | | | | | /38 | | t p | ດ້ | | | æ= | | z t. | ವ . | , ² , | 134 | | n 18 | <u>"</u> | | Ę= | | ~~ | | | | 137 | | lad
Break in 1st block | ก้า | £ | | | | | | | /38 | | Bre | Ĉ1 | | | | | | | | 18 | | | | *********** | | 91 | | a. | ä . | 9 * | In 184 | | | o o | | | જ | | ъ | ь | ಕ | <i>I</i> 22 | | | t- | | | | | | | | J'o | | lock | မ | | | | | æ | ~ | | $I_{\omega_3} I_{\mathfrak{N}}$ | | 1st block | 10 | | F | | F | | • , | | | | in 1s | 4 | | | | | | | | 16 | | | en . | | | of. | | n | ь | ಕ | I31 132 | | Short | 61 | | | | | 60 | 10 | | 187 | | | P-4 | a | | | | | | | 130 | | | Assemblies
of base | Į. | ** | S. | 3 | Š | 3 | er | Types of info. | The plain numbers and the primed numbers in Tables 27 -- 29 denote closing and opening, respectively, of a contact designated by this number; O denotes, as always, the network in working order. Certain columns are split, depending on whether the number i is even (e) or odd (o). When i = n the columns in Tables 27 and 28, corresponding to the indices 3, 4, 10, 11, and 12, need not be considered. After these explanations, let us write out the values of the following parameters which enter into Tables 27 -- 29: $$\alpha = 11 \dots 11, \delta = 11 \dots 10,$$ $\mu = 00 \dots 00, \sigma = 10 \dots 01.$ The remaining parameters are given in Table 30. A survey of Tables 27 -- 29 shows that we have 39 different types of information. We shall not write out a table of information in explicit form, and shall confine ourselves only to an indication at the end of each column, of the information with which a given fault is connected. As a result of running through the base we obtain quite definite information, which contains not only the type of information, but also as a rule the value of the index i for the parameters β_i , γ_i , ε_i , γ_i , γ_i , γ_i , γ_i , and γ_i . Let us write now a list of faults, connected | | | 7 | ARCHAN - IV-Marie - Arte - Archa September (Vallender Frahese - Archanol Brown B | |---|-----------|------------
--| | • | . 010111. | G | For 1 even | | • | . 01011 | 0 | For 1 odd | | | . 01011 | 6 | For i even | | • | . 0101111 | 5 | For 1 odd | | • | | , , | | | • | 011 | grad | ŝ | | • | 010100 | 01 · · · · | إسه | | • | . 101000 | 01 · · · · | For 1 odd | | • | . 101000. | ā. | *** | | • | . 010100 | 5. | إسيد | | • | . 110 | 07 | | _1_ Note: It is obvious that fart = far, Tar-1 == Tar, Rar-1 == Par, Age+1 == Age. with given information. We shall distinguish here two cases. The information determines uniquely faults, the indistinguishability of which is established. I 6--presence of a shortcircuit in the 5-th contact of the i-th block, i.e. 5; where i -- even, " 5-th contact of the i-th block, i.e. 5; where i -- odd, an open circuit in the 2nd contact of the i-th block, i.e. 2; where i -- even, " 2nd contact of the i-th block, i.e. 2; where i -- odd " 4-th or 12-th contact of the i-th block, i.e., 4; V 12'₁, 5-th contact of the i-th block, i.e. 5_i , where i -- even ``` I₂₀-- presence of an open circuit in the 5-th contact, i.e, 5;, where i -- odd 6-th contact, 121-- i.e., 6;, 9-th contact, i.e., 9_i^1, where i -- even, 9th contact, I₂₄-- i.e., 9_i, where i -- odd 13-th contact, i.e., 13;, 14-th contact, i.e. 14; , where i -- even 14-th contact, I₂₇-- i.e. 14; where i -- odd 15-th contact, i.e. 15;, where i -- even 15-th contact, I₂₉-- i.e. 15;, where i -- odd ``` 130-presence of shortcircuit in the 1-st contact of the 1-st block, i.e. 1 2-nd or 6-th contact of the 1-st block, i.e. 2₁ $\sqrt{6_1}$ " 3-rd or 8-th contact of the 1-st block, 1.e. 3, V 8, " 5-th contact of the 1-st block, i.e. 51 " 1-st and 5-th contacts open of the 1-st block, i.e. 1! V 5; 2-nd contact of the 1-st block, i.e. 2; " 3-rd or 7-th contacts of the 1-st block, i.e. 3; V 7; " 4-th or 8-th contacts I₃₇-of the 1-st block, i.e. 41 V 81 ii 6-th contact of the 1-st block, i.e. 6 b) The information determines directly several faults, which are either distinguishable, or those for which the distinguishability has not been established for certain values of i. I_0 -- denotes that either the network is in working order, or there is a short circuit in the 4-th or 12-th contacts of an unknown block or in the 4-th or 7-th contact of the 1-st block, or else the presence of an open circuit in the 10-th contact of an unknown block, i.e., $0 \lor 4 \lor 12 \lor 4 \lor 7 \lor 10$; I_1 denotes the presence of a short circuit in the 1-st contact of the i-th block, or in the 7-th contact of the (i - 1)-th block, i.e., $I_1 \bigvee 7_{i-1}$, where i is even (2 \leq i \leq n + 1); I_2 denotes the presence of a short circuit in the 1-st contact of the i-th block or in the 7-th contact of the (i - 1)-th block, i.e., $I_i \bigvee 7_{i-1}$, where i is odd (2 \angle i \leq n + 1); I₃ denotes a presence of a short circuit in the 2-nd contact of the 1-th block or in the 8-th contact of the (i * 1)-th block, i.e., $2_i \lor 8_{i+1}$, where i is even (1 < i \le n); $I_{i_{+}}$ denotes the presence of a short circuit in the 2-nd contact of the i-th block or in the 8-th contact of the (i + 1)-th block, i.e., 2_{i} \bigvee 8_{i+1} , where i is odd (1 \leq i \leq n); I₅ denotes the presence of a short circuit in the 3-rd or 11-th contact of an unknown block, i.e, 3 $\sqrt{11}$; I₈ denotes the presence of a short circuit in the 6-th contact of an unknown block, i.e., 6; I₉ -- denotes the presence of a short circuit in the 9-th contact of an unknown block, i.e., 9; I₁₀ -- denotes the presence of an open circuit in the 10-th contact of an unknown block, i.e., 10; I_{11} -- denotes the presence of a short circuit in the 13-th or 15-th contacts of an unknown block, i.e, 13 \vee 15; I_{12} -- denotes the presence of a short circuit in the 14-th or 16-th contacts of the i-th block, i.e., 14, V 16, where i is even; I_{13} -- denotes the presence of short circuit in the 14-th or 16-th contacts of the i-th block, i.e., 14, \bigvee 16, where i is odd; I_{11} -- denotes the presence of an open circuit in the 1-st or 7-th contacts of an unknown block, i.e., 1: \bigvee 7: I_{17} -- denotes the presence of an open circuit in the 3-rd or 11-th contacts of the i-th block, i.e., 3; \bigvee 11; I₂₂ -- denotes the presence of an open circuit in the 8-th contact of an unknown block, i.e., 8. Note. In I_1 , I_2 , I_3 , and I_4 the faults 7_1 , 1_{n+1} , 8_{n+1} , and 2_1 are fictitious and should be discarded. The foregoing list shows that in the case of appearance of information indicated in item "a" the fault is established and the monitoring is completed. However, in the appearance of information indicated in item "b" additional analysis is necessary. Since this analysis uses essentially the effect of the backward wave, we shall proceed to consider the backward wave. - V. Effect of the Backward Wave. We have already taken into account in certain auxiliary arguments, considerations that take into account the effect of feedback. Now, on the basis of an account of the effect of the backward wave, we shall, on the one hand, establish the indistinguishability of certain faults, and on the other hand we shall show for certain cases how faults can be detected. - 1) Proof that $f_{13}^i = f_{15}^i$ and $f_{14}^i = f_{16}^i$ ($i \ge 2$). It follows from the table of fault functions that it is impossible to distinguish f_{13}^i from f_{15}^i and f_{14}^i from f_{16}^i . if only the effect of the forward wave is taken into account. It remains for us to show that this is also impossible if the action of the backward wave is considered. In fact, for any assembly e, both in the case of closing of the contact 13 and in the case of the closing of the contact 15 (or respectively the closing of contacts 14 and 16), either the outputs of the (i - 1)-th block are simultaneously closed, and then in both cases the same backward wave is produced, or else they are simultaneously open and there is no backward wave at all, i.e., $f_{13}^{i}(e) = f_{15}^{i}(e)$ (or respectively $f_{14}^{i}(e) = f_{16}^{i}(e)$). This proves the statement. It follows therefore that upon appearance of information I_{12} or I_{13} , the analysis of the fault is complete. 2) Proof of Distinguishability of f_{\downarrow}^{i} from f_{O} and f_{12}^{i} when i > 2 (when i = 2 we have $f_{\downarrow}^{2} = f_{O}$, see p, 347 /of source/). We agree furthermore to place in the assembly $\begin{pmatrix} a_{n} & a_{i} & a_{i} & a_{i} \\ b_{n} & b_{i} & b_{i} \end{pmatrix}$ a " * " or " - " sign above the corresponding column, if we wish to note whether carry teck-place-in from the preceding columns took place or not. Obviously, to detect a short circuit in the 4-th contact of the i-th block by means of the backward wave it is necessary that the verifying assembly contain in the i-th column (the * guarantees that $\overline{c}_{i-1}=0$). Furthermore, to observe the appearance of a backward wave on the pole \overline{c}_{i-1} , it is necessary that the (i - 1)-th column of this assembly be $\frac{1}{a}$, for then when the 4-th contact of the i-th block is closed we have Obviously, in the absence of carry in the (i-2)-th column and upon closing of the 12-th contact of the (i-2)-th block, we shall have $\overline{c}_{i-2} = 1$ and therefore $s_{i-1} = 0$. Thus, in the absence of carry in the (i-2)-th column (i > 3) we shall have $f_{i}^{1} = f_{12}^{1-2}$. Consequently, to avoid this identification, it is necessary that when i > 3 the investigated assembly have the form $\begin{pmatrix} \dots & 0 & 0 & \dots \\ \dots & 0 & 1 & \dots \end{pmatrix}$. It is seen therefore, that a fault in the 4-th contact of the i > 3 block (unknown) is determined with the aid of four assemblies, for example: $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 & 0 \\ \dots & 0 & 1 &
1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 0 & 1 & 1 & 0 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 1 & 1 & 0 & 1 \\ \dots & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} \dots & 0 & 1 & 1 & 0 & 1 \\ \dots & 0 & 1 & 1 & 1 & 0 &$ The remaining faults 0, 4₁ $\sqrt{7}$ ₁, 1₁, 2₁, 3₁, 6₁, 7₁, 8₁, 9₁, 10₁, 11₁, 12₁, 13₁ $\sqrt{15}$ ₁, 1₁, 3₁, 7₁, 8₁, 10₁, and 11₁ can be established in principle by taking into account only the forward wave. However, we shall see later that by using the effect of the backward wave we can construct a more compact conditional test. VI. Construction of the Tests T_{1i} . In the case of appearance of information I_1 or I_2 , the index i and the faults I_1 \bigvee 7_{i-1} are determined. To distinguish them, we take the test where $$T_{I_i} = \{e_8\} \ \text{ov} \ T_{I_2} = \{e_8\},$$ $$e_8 = \begin{pmatrix} 0 & \dots & 0 & 1 * & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & & 0 & \dots & 0 \end{pmatrix}^*.$$ Obviously, on running through the assembly e_8 , we have the following: in the case $$l_i$$ -- 0 ... 0 1 1* 0 ... 0 in the case l_{i-1} -- 0 ... 0 1 0* 0 ... 0 In the case of appearance of information I_3 or I_4 , we also determine the index i and the faults 2i < 8i+1. To distinguish them, we take the test where $$T_{I_s} = \{e_{\mathfrak{g}}\} \text{ in } T_{I_s} = \{e_{\mathfrak{g}}\}.$$ $$e_{\mathfrak{g}} = \begin{pmatrix} 0 & \dots & 0 & 1 & 0^* & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}.$$ Here, upon running through the assembly e_9 , we have the following: ^{*} The asterisk denotes here the i-th column. in the case 2 -- 0 ... 0 1 0 0* ... 0 in the case $8_{i+1} -- 0 \dots 0 1 1 0* \dots 0$ We note that when i = n the information $I_3(I_4)$ yields 2_n and no further analysis is necessary. Let us consider the case of appearance of information I_8 , I_9 , and I_{11} . We put $$T_{I_0} = T_{I_0} = T_{I_{11}} = \{e_{10}\},$$ where $$e_{10} = \begin{pmatrix} 0 & \dots & 0 \\ 0 & \dots & 0 \end{pmatrix}.$$ In the case of appearance of "l" in the i-th column upon running through the assembly e_{10} , i.e., if 0... 0 l* 0... 0 appears, we have respectively e_{1} , e_{1} , and e_{2} , e_{3} . In the case of appearance of the information \mathbf{I}_{10} , as seen from the table of fault functions of the i-th block, we must put $$T_{I_{10}} = \{e_{11}, e_{12}\},$$ where $$e_{11} = \begin{pmatrix} \dots & 0 & 1 & 0 & 1 \\ \dots & 1 & 1 & 1 & 1 \end{pmatrix}, \quad e_{12} = \begin{pmatrix} \dots & 1 & 0 & 1 & 0 \\ \dots & 1 & 1 & 1 & 1 \end{pmatrix}.$$ Upon running through assemblies $(\dots 0^{k} | \dots)$ and $(\dots 0^{k} | \dots)$ when the 10-th contact of the i-th block is closed, we have respectively ... 1 0 1 1* 1 0 ... and ... 1 0 1* 1 1 0 ... instead of ... 1 0 1 0* 1 0 ... and ... 1 0 1* 0 1 0 ..., i.e., a "l" appears in the i-th and (i - 1)-th columns (when i = 2, the "l" appears only in the first assembly, since the backward wave from the second block is not caught). It is seen therefore that the number of the faulty block is established. From the table of the fault functions of the i-th block it is also seen that upon appearance of information I_{14} it is necessary to take the test $T_{I_0} = \{e_{11}, e_{12}\}.$ In fact, the presence of a fault l_i \bigvee 7_i is characterized by the fact that in running through the assembly $\binom{0}{1}\binom{0}$ In the case of appearance of information \mathbf{I}_{17} , one must take the test $$T_{I_{ij}} = \{e_{13}\},$$ where $$e_{13} = \begin{pmatrix} \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ \dots & 0 & 1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$ In the case of a fault 3; instead of ... 0 1 0* 0 ... there appears ... 0 0 0* 0 ... (the "l" disappears from the (i * 1)-th column). Analogously, in the case of appearance of information I_{22} the test I_{122} is determined for the establishment of the number of the block in which the contact 8 is open circuited. Namely $$T_{I_{22}} = \{e_{14}, e_{15}\},$$ where $$e_{14} = \begin{pmatrix} \dots & 1 & 1 & 1 & 1 \\ \dots & 0 & 1 & 0 & 1 \end{pmatrix}, e_{15} = \begin{pmatrix} \dots & 1 & 1 & 1 & 1 \\ \dots & 1 & 0 & 1 & 0 \end{pmatrix}.$$ Here, when the 8-th contact of the i-th block is open circuited, upon running through the assembly (... (* 1 ...) instead of ... 1 0* 1 ... one obtains ... 0 0* 1 ... (the "l" disappears in the (i * 1)-th column). The informations I_0 and I_5 lead to more complicated explanations and constructions. Thus, assume that we have the information I_0 . This means that the network can be in one of the states $0 \lor 4 \lor 12 \lor 4 \lor 7 \lor 10^{\circ}$. As already noted, in step V, the verifying assembly for disclosing a short circuit in the 4-th contact of the i-th
block $(i \gt 2)$ should contain the following values, in the i-th, (i-1)-th, and (i-2)-th columns. In this case upon closing of the 4-th contact of the i-th block, running through the verifying assembly, we obtain ... l* 1 1 ..., i.e., there appears a "l" in the (i-1)-th column. On the other hand, the presence of a carry in the (i-2)-th column prevents the possibility of the appearance of a "l" in the (i-1)-th column, because of a short circuit in the 12-th contact of the (1-2)-th block. Thus, the "l" appearing in the (i-1)-th column as a result of running through the verifying test of the indicated type is evidence of the presence of a short circuit in the 4-th contact of the i-th block. However, the "1" can appear in the (i + 1)-th column because of the backward wave due to a fault in the 4-th contact of the (i + 2)-th block, i.e., if the assembly has the form (...oii...). To block the path of the backward wave in the (i + 1)-th block, it is enough to take the assembly (...io i*...). Let us show that in the case of appearance of information \mathbf{I}_0 , the completion of the monitoring calls for taking the test $T_{I_0} = \{e_{16}, e_{17}, e_{18}, e_{19}, e_{20}, e_{21}\},$ where The foregoing assemblies are based on the repetition of the combination $\begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$. In assemblies e_{19} and e_{21} we took for the 1-st column in and not e_{1} , to ensure transfer to the next column. If upon running through the assembly e_{18} a "l" appears in the 1-st column, we obviously have $4_1 \vee 7_1$. If the network is in proper working order, running through any of the foregoing assemblies leads to an assembly in which pieces 0 0, 0 1, and 1 1 alternate (from right to left), where 0 0 is followed by 0 1, 0 1 is followed by 1 1, 1 1 by 0 0, etc., excluding the 1-st colum for the assemblies e_{17} , e_{18} , e_{19} , e_{20} , and e_{21} . For example, in running through e_{16} we would obtain ...00110100. The preceding arguments show that if upon running through a set from $\mathbf{T}_{\text{$\mathbf{I}_{\mathbf{A}}$}}$ the piece 0* 0 goes into 1* 1, then the 4-th contact of the (i * 1)-th block is short circuited, the piece 0* 0 goes into 1* 0, then the 12-th contact of the (i * 1)-th block is short circuited, the piece l* l goies into 0* l, then the 10-th contact of the (i - l)-th block is open circuited. An exception is the assembly e20, for when we run through it, if in the first two columns we have 1 0 instead of 0 0, we have a short circuit in the 4-th contact of the 3-rd block. Finally, if information I, appears, we have $3 \vee 1^{-}$. As seen from the table of fault functions and the diagram of the i-th block, to determine the number of the faulty block $(3_1 \vee 11_1)$ and to detect a short circuit in the 3-rd contact of the i-th block (i \geq 2), one must take the assemblies ... l 0* ... instead of ... 0 0* ... not only because of a closing of the 3-rd contact of the i-th block, but also because of the influence of the backward wave, produced, for example, upon closing of the 3-rd or 11-th contact in the (i * 2)-th block, if the assembly has the form (... 0 1 (...). To prevent the action of the backward wave on the (i * 1)-th block we refine in this assembly the (i * 2)-th column in the following manner: (... $1 \cdot 0 \cdot 1^* \cdot ... \cdot$ where These assemblies are based on the repetition of the combinations (01101). In the last assembly to insure carry in the second column, we used instead of 0 as the first column. When the network is in proper operating condition, upon running through the foregoing assemblies, the result is an alternation, perhaps with the exception of the first three columns. Thus, upon running through the ascembly e₂₄ we have, in the case of a properly working network, ... 0 0 1 0 1 0 0 1 0 0. From the foregoing considerations we conclude that if the piece 1 0* 1, and also the piece 1* 0 1 have become 1 1* 1 and 1* 1 1 respectively, we have a short circuit in the 11-th contact of the i-th block, but if the piece 0 0* has become 1 0*, we have a short circuit in the 3-rd contact of the i-th block. Note. In running through the assembly e_{25} the piece 1 0 0 plays the same role as the piece 1 0 1: if it becomes 1 1 0, it means either a short circuit of the 11-th contact of the 3-rd block, or a short circuit $3_2 \vee 11_2$ in the 2-nd block. This completes the construction of the condition- The investigation shows also that all the faults, with the exception of those listed in step II, are pairwise distinguishable. We thus arrive at the following result. Theorem. To detect a single fault in a one-step binary summator network (see beginning of the section) one can construct a conditional test of length \leq 13. Attention should be called here to the fact that the length of the conditional test is independent of n. The fact that with increasing n, and therefore with increasing number of fault functions, the test does not become longer is due to the increase in the number of network outputs, and consequently, with the increased amount of information obtained at the outputs upon running through the assemblies. ## BIBLIOGRAPHY - 1. Gavrilov M. A. - Theory of Relay-Contact Networks7, Published by Academy of Sciences U. S. S. R., Moscow-Leningrad, 1950. - 2. Luzin N. N. - Liectures on Analytic Sets/, Gostekhizdat, Moscow, 1953. - 3. Povarov G. N. Investigation of Contact Networks with Minimum Number of Contacts (Dissertation), Institute of Automation and Telemechanics, Academy of Sciences U. S. S. R., Moscow, 1954. - 4. Hausdorf. Set Theory (Russian translation), Costekhizdat, Moscow-Leningrad, 1937. - 5. Yahlonskiy S. V. and Chegis I. A. On Tests for Electric Networks. Usp. mat. nauk (Progress in Mathematical Sciences 10, No. 4 (66), 1955, 182--184. - 6. Yablonskiy S. V. Functional Constructions in k-valued Logic (Present collection). - 7. Shannon C. E. A Symbolic Analysis of Relay and Switching Circuits. ATEE Trans., 57, 1938, 713--722. - 8. Shannon C. E. The Synthesis of Two-Terminal Switching Circuits. BSTJ, 28, No. 1, 1949, 59--98. E N D FOR REASONS OF SPEED AND ECONOMY THIS REPORT HAS BEEN REPRODUCED FLECTRONICALLY DIRECTLY FROM OUR CONTRACTOR'S TYPESCRIPT THIS PUBLICATION WAS PREPARED UNDER CONTRACT TO THE UNITED STATES JOINT PUBLICATIONS RESEARCH SERVICE A FEDERAL GOVERNMENT ORGANIZATION ESTABLISHED TO SERVICE THE TRANSLATION AND RESEARCH NEEDS OF THE VARIOUS GOVERNMENT DEPARTMENTS